Status and future prospects of precision computations for Higgs Physics at the LHC

Fabrizio Caola

Rudolf Peierls Centre for Theoretical Physics & Wadham College

PANIC 2021, Sep 5 2021

Higgs physics: a snapshot

Higgs: at the forefront of high-precision calculations in the SM

Current situation: theory

- all but one (ttH) channels known at NNLO. ggF and VBF known at N³LO
- in many cases (leading) EW corrections known
- most important decay channels under control

Current situation: experiment

- most production/decay channels known at 20% or better
- so far, Higgs very SM-like

Goals: investigations at the few-percent level

- in many cases possible experimentally
- no new-physics at the TeV scale \rightarrow deviations from SM of order Q²/ $\Lambda^{2}_{BSM} \sim 0.1$
- $\alpha_{EW} \sim 0.1 \rightarrow$ investigate quantum structure of the SM
- at least in principle, should be possible from TH point of view (much beyond that: non-perturbative effects...)

Fully-differential Higgs @ N³LO: P2B

[Chen, Gehrmann, Glover, Huss, Mistlberger, Pelloni (2021)]

- Higgs rapidity distribution [Dulat, Mistlberger, Pelloni (2018)]
- Exquisite numerical control of H+j@NNLO [NNLOjet, 2015-2021]
- Combined using P2B [Cacciari, Dreyer, Karlberg, Salam, Zanderighi (2015)]

Fiducial results at N³LO+N³LL

[V+jet@NNLO: NNLOjet, extremely stable down to pt ~ 0.5 GeV]

Fixed-order: <u>large spurious</u> <u>fiducial correction effects</u>

At N³LO: as large as correction itself

[Re, Rottoli, Torrielli (2021)]

$$\begin{split} \sigma_{\rm incl}^{\rm FO} &= 13.80 \left[1 + 1.291 + 0.783 + 0.299 \right] {\rm pb} \,, \\ \sigma_{\rm fid}^{\rm FO} / \mathcal{B}_{\gamma\gamma} &= 6.928 \left[1 + (1.300 + 0.129_{\rm fpc}) \right. \\ &+ (0.784 - 0.061_{\rm fpc}) \right. \\ &+ (0.331 + 0.150_{\rm fpc}) \right] {\rm pb} \,. \end{split}$$

Spurious fiducial-correction effects

The issue: ATLAS / CMS fiducial cuts induce sensitivity to IR physics in

f.o. calculations [Catani, Cieri, de Florian, Ferrera, Grazzini (2018); Ebert, Michel, Tackmann + Billis, Dehnadi (2017-2021); Salam + Slade (2015, 2021)]

Two options:

- abandon fixed-order calculation (resummation is well under-control)
- design sets of cuts that do not induce such sensitivity, while still being practical and retaining good S/B ratio[Salam, Slade (2021)] N3LO truncation: sum cuts

channel	$\sigma^{ m NNLO}_{ m HEFT} ~[m pb] \ \mathcal{O}(lpha_s^2) + \mathcal{O}(lpha_s^3) + \mathcal{O}(lpha_s^4)$	$egin{array}{l} (\sigma^{ m NNLO}_{ m exact} - \ \mathcal{O}(lpha^3_s) \end{array}$	$\sigma^{ m NNLO}_{ m HEFT})~[m pb] \ {\cal O}(lpha_s^4)$	$(\sigma_{\mathrm{exact}}^{\mathrm{NNLO}}/\sigma_{\mathrm{HEFT}}^{\mathrm{NNLO}}-1)$ [%]
gg	7.39 + 8.58 + 3.88	+0.0353	$+0.0879 \pm 0.0005$	+0.62
qg	0.55 + 0.26	-0.1397	-0.0021 ± 0.0005	-18
qq	0.01 + 0.04	+0.0171	-0.0191 ± 0.0002	-4
total	7.39 + 9.15 + 4.18	-0.0873	$+0.0667 \pm 0.0007$	-0.10
		$\sqrt{s} = 13$	TeV	
gg	16.30 + 19.64 + 8.76	+0.0345	$+0.2431 \pm 0.0020$	+0.62
qg	1.49 + 0.84	-0.3696	-0.0115 ± 0.0010	-16
qq	0.02 + 0.10	+0.0322	-0.0501 ± 0.0006	-15
total	16.30 + 21.15 + 9.79	-0.3029	$+0.1815 \pm 0.0023$	-0.26

Confirmed expectations, source of uncertainty removed

1.0

^{0.5}ر

0.0

[Anastasiou, Penin (2020)] nt NNLO

VBF: factorizable vs non factorizable

Dominant, known at NNLO (diff) + N³LO (inclusive)

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi (2015); Cruz-Martinez, Glover, Gehrmann, Huss (2018); Dreyer, Karlberg (2016)] V_1^* V_2^* P_2 Starts at NNLO; kinematic suppressed in VBF region, color-suppressed (but π^2 enhanced)

Only recently leading contribution has been computed [Liu, Melnikov, Penin (2019)]

VBF: factorizable vs non factorizable

and Recent ophiendmenological study for H and HH

[Drever, Karlberg, Tancredi (2020)] Frédéric A. Drever et al.: On the impact of non-factorisable correction

- Inclusive: non-factorizable corrections can be large
- Fiducial: typically suppressed, however non-trivial shapes
- Become important at large pt,H, pt,J. EFT/BSM studies?

0.006

0.004

0.002

50

40 30 20

10 0 -10 -20 -30

-2

 $\Delta y_{j_1j_2}$

 δ [%]

- Treat di-boson and tri-boson contributions on an equal footing
- Careful when using MC for inclusive extrapolations...

VH: realistic jet algorithm in the bb channel

- VH@NNLO well-known, as well as fully differential $H \rightarrow bb$, for massless b
- Starting from NNLO: tagged massless b IR unsafe with anti-kT, needs to use dedicated algorithm [Banfi, Salam, Zanderighi (2006)]. Different behaviour w.r.t. anti-kT, impossible to make clean TH-EXP comparisons
- Recently: H→bb with massive b [Bernreuther, Chen, Si (2018); Behring, Bizon (2020)] → realistic TH-EXP comparison possible

[Behring, Bizon, FC, Melnikov, Röntsch (2020)]

NNLOPS also available [Astill, Bizon, Re, Zanderighi (2020)]

WH: precise results for jet-bins

For WH: jet-binned cross section very important for signal/background discrimination. Non-trivial to properly describe

Large residual uncertainties [Astill, Bizon, Re, Zanderighi (2016)]

[Gauld, Gerhmann-de Ridder, Glover, Huss, Majer (2020)]

√s = 13 TeV NNLOJET \rightarrow W⁺ H + jet(s) NNLO≥1j ── NLO≥1j ── LO 0.2 We observe that the $O(\alpha_s)_t$ top Yukawa¹ induced piece is of the same order of magnitude as the inclusive Drell-Yan $\widehat{\mathcal{O}}(a_s^3)$ correction and much smaller than the The size of this top loop-induced piece exclusive one. is comparable to the uncertainty on both the inclusive End exclusive NNLO Drell-Yan-like cross sections (cf. Table 95, which necessarily prompts its inclusion for precision phenomenology. However, the theoretical error estimate or these top-loop contributions is small, and as such, we do not expect their mostly unknown—higherorder $\mathcal{O}(\dot{\mu}_{\mathcal{Y}}^{3})$ corrections to be phenomenologically relevantoforthis process. 1.0 Ratio 0.9 0.8 Distributions

Recently: WH+J@NNL

- Large NNLO corrections in exclusive bins (expected)
- Jet-binned cross-section under much better control

(2.09)

(1.35)

(0.48)

set-

pper

cross

For

e ob-2-jet

ZH: towards $gg \rightarrow ZH@NLO$

A serious problem for ZH: $gg \rightarrow$ ZH. Formally: NNLO, but new channel and gluon induced \rightarrow expect very large corrections

W+H	$_{\mathrm{PDF}\opluslpha_{\mathrm{s}}}$ [%]	$\Delta_{\rm le}$ [%] Δ	$_{ m EW}$ [pb] $\Delta_{ m sca}$	QCD⊗NLO	$\sigma_{ m NNLO}$	\sqrt{s} [TeV]
	1.79	0.74 0.73	+	0.831		13
ZH, full	$\alpha_{\text{PDF}\oplus\alpha_{s}}$ [%]	$_{ m ale}$ [%] Δ	$_{\rm EW}$ [pb] $\Delta_{ m sca}$) QCD⊗NLO	$\sigma_{ m NNLO}$	\sqrt{s} [TeV]
	1.65	3.50 2.68	+	0.880		13
	$\Lambda_{\rm DDD}$ [%]	Δ , [%]			√s [TeV	
ZH, no gg	$\frac{-PDF \oplus \alpha_{s}}{1.78}$	$+0.49 \\ -0.61$	0.758	·] · NNLO (13	
ZH, aa only	$\Delta_{\mathrm{PDF}\opluslpha_n}$ [%]	$\Delta_{\text{scale}} [\%]$	OCD⊗NLO EW [pb]	V] $\sigma_{\rm NNLO}$ (\sqrt{s} [TeV	
	4.37	$+24.9 \\ -18.8$	0.123		13	

ZH@NLO: desirable...

ZH: towards $gg \rightarrow ZH@NLO$

ZH@NLO: complicated 2L scattering amplitudes involving virtual top loops

Computation recently done, either numerically or using suitable approximation [Davies, Mishima, Steinhauser (2020); Chen, Heinrich, Jones, Kerner, Klappert, Schlenk (2020); Alasfar, Degrassi, Giardino, Gröber, Vitti (2021)]

After a long time: all ingredients for $gg \rightarrow ZH@NLO$ available!

Similar situation for gg→VV at high-mass Brønnum-Hansen, Chen (2020-2021); Davies, Mishima, Steinhauser, Weller (2020); Agarwal, von Manteuffel, Jones (2020)] Stay tuned for results!

Towards ttH@NNL0

Bottleneck: 2L virtual amplitude (non-trivial, but progress....)

In the meantime: getting ready for it. ttH@NNLO in the off-diagonal channels (qg,qq,qq') [Catani, Fabre, Grazzini, Kallweit (2021)]

aper, we consider the second second

Conclusion

Higgs keeps pushing forward our understanding of collider pheno

Very sophisticated calculations

- N³LO, multi-leg EW, complex loop scattering amplitudes
- refined shower predictions, resummations...

Higgs program is well underway, but getting to the few percent highly non-trivial. Many small subtle effects playing

- good definition of fiducial region
- ggF: heavy quark effects, non-trivial EW corrections...
- VBF: factorizable vs non factorizable
- At some point: non-perturbative corrections?

Another important chapter: input parameters (α_s , PDFs...)

... a lot of progress, but a lot still to be done \rightarrow interesting times ahead

Thank you very much for your attention!