1- Motivation

<table>
<thead>
<tr>
<th>N_{SID}</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N^D_{SID}</td>
<td>34%</td>
<td>24%</td>
<td>4%</td>
</tr>
<tr>
<td>N^ID_{SID}</td>
<td>18%</td>
<td>12%</td>
<td>2%</td>
</tr>
<tr>
<td>N^ID_{SID}</td>
<td>3%</td>
<td>2%</td>
<td>0%</td>
</tr>
</tbody>
</table>

3.2% of $H \to bb/\gamma\gamma$ events have at least one semi-leptonic b- or c-decay \Rightarrow degrade the invariant di-jet mass (important to separate ZH/ZZ and ZH/ZZH) [1]

- avoid by:
 - a better neutrino correction
 - a better parametrisation of the jet uncertainties

2- ν-correction

1. identify b- or c-jets \to flavour tagging
2. find the semi-leptonic decay(s) in the jet \to find and tag leptons in jets
3. estimate neutrino momentum from kinematic of the semi-leptonic decay

$$ E_\nu = E_X - E_{\text{vis}} = \frac{E_{\text{vis}}}{m_X} \bar{p}_{\text{vis}} \parallel \left(m_X^2 - E_{\text{vis}}^2 \right)^{1/2} - \bar{p}_{\text{vis}}^\perp $$

Use kinematic fit to decide!

As proof of principle: cheat input to ν-correction

3- Kinematic fitting

Mathematical tool that adjusts measured quantities within their uncertainties to fulfill certain constraints [2] [3]

- E & $p\bar{p}$ conservation: clean collision environment at lepton colliders
- Invariant mass of known particles (e.g. $m_{\mu\mu}$) as soft constraint
- Minimize χ^2:
 $$ \chi^2 (a, \xi, f) = (\eta - a)^T V^{-1} (\eta - a) - 2 \lambda^T f (a, \xi) $$

 - η: vector of measured kinematic variables
 - V: covariance matrix
 - a: vector of fitted quantities
 - λ: Lagrange multipliers
 - ξ: vector of unmeasured kinematic variables
 - $f (a, \xi)$: vector of constraints

4- PFA paradigm and jet error parametrization

ErrorFlow [4]

1. σ_det: detector resolution
2. σ_conf: effects of confusion in the PFA
3. σ_clus: mistakes in the jet clustering
4. σ_overlay: uncertainties of $\gamma\gamma \to \ell\mu\nu \ell\mu\nu$ hadron overlay removal
5. $\sigma_\text{\nu}$: uncertainties of ν-correction for semi-leptonic b- and c-decays

5- Fit performance

- Flatmost fit probability ever seen!
- Drastically improved pull distributions

6- Higgs mass reconstruction

- ISR and Beamstrahlung included
- Fully cheated ν-correction
- ErrorFlow: jet error estimation

<table>
<thead>
<tr>
<th>m_H: \ ν correction + Kinfit \Rightarrow together</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAstically improved reco.</td>
</tr>
<tr>
<td>m_H:</td>
</tr>
</tbody>
</table>

Add backgrounds:

- $e^+e^- \to ZZ \to \mu\mu$
- $\gamma\gamma \to low p_T$ hadron overlay
- $Z \to bb$ and $H \to bb$ well separated: background not pulled towards signal
- Potentially large improvement eg for Higgs self-coupling prospects

ongoing: perform ν-correction based on reconstructed information only