

PANIC Lisbon Portugal

Hadronic decays of charmed hadrons at BESIII

Ying-Rui Hou (On behalf of BESIII) University of Chinese Academy of Sciences

Outline

- Introduction
- Strong phase difference measurements
- Amplitude analyses of D_s decays
- Branching fraction results
- Summary

BESIII

 $\overline{D}/D_s^{*-}/\overline{\Lambda}_c^-$

Data samples	\sqrt{s} (GeV)	Int. $\mathcal L$ (f b^{-1})
$D\overline{D}$	3.773	2.93
$D_{S}^{+}D_{S}^{*-}$	4.178	3.19
$D_{S}^{+}D_{S}^{*-}$	4.189-4.226	3.18
$\Lambda_c^+ \overline{\Lambda}_c^-$	4.599	0.567
$\Lambda_c^+ \overline{\Lambda}_c^-$	4.612-4.698	3.8

•
$$\Delta E = E_D - E_{Beam}$$

• $M_{BC} = \sqrt{s/4 - |\vec{p}_D|^2}$
• $M_{rec} = \sqrt{[E_{cm} - (\vec{p}_{D_s}^2 + m_{D_s}^2)^{\frac{1}{2}}]^2 - |\vec{p}_{D_s}|^2}$

•
$$N_{ST} = 2 \cdot N_{D\overline{D}} \cdot \epsilon_{ST} \cdot B_{ST}$$

• $N_{DT} = 2 \cdot N_{D\overline{D}} \cdot \epsilon_{DT} \cdot B_{Tag} \cdot B_{Sig}$

Signal side

PANIC 2021, Lisbon

Quantum-coherent $D\overline{D}$

- Improving measurement result of γ in CKM unitarity triangle is one key to test SM and search NP
- Strong phases of $K^0\pi\pi$, K^0KK , $K^-\pi^+\pi^+\pi^-$ and $K^-\pi^+\pi^0$ are key inputs to γ measurement

 $\Gamma(F|G) \propto A_F^2 \bar{A}_G^2 + \bar{A}_F^2 A_G^2 - 2R_F R_G A_F \bar{A}_F A_G \bar{A}_G \cos(\delta_D^F - \delta_D^G)$

Method	γ
Direct[1]	$\left(66.2^{+3.4}_{-3.6} ight)^{\circ}$
Indirect[2]	$\left(63.4^{+0.9}_{-0.9}\right)^{\circ}$
[1], DDC 2021	

[1]: PDG 2021 [2]: JHEP03((2020) 112

of $D \rightarrow \overline{K_{S/L}} \overline{KK}$

$$c_{i} \equiv \frac{1}{\sqrt{F_{i}F_{-i}}} \int_{i} |f_{D}(m_{+}^{2}, m_{-}^{2})| |f_{D}(m_{-}^{2}, m_{+}^{2})| \times \cos[\Delta \delta_{D}(m_{+}^{2}, m_{-}^{2})] dm_{+}^{2} dm_{-}^{2},$$

$$s_{i} \equiv \frac{1}{\sqrt{F_{i}F_{-i}}} \int_{i} |f_{D}(m_{+}^{2}, m_{-}^{2})| |f_{D}(m_{-}^{2}, m_{+}^{2})| \times \sin[\Delta\delta_{D}(m_{+}^{2}, m_{-}^{2})] dm_{+}^{2} dm_{-}^{2}.$$

- Good agreement with the previous measurements by CLEO Collaboration
- Uncertainties on γ are 2.3°, 1.3°, 1.3° for N=2,3,4 binning schemes

PhysRevD.102.052008

$c_i^{(\prime)}, s_i^{(\prime)} \text{ of } D \to K_{S/L} \pi \pi$

- A factor of ~2.5 (2.0) more precise for c_i(s_i) than previous results
- The associated uncertainty on γ is reduced from ~3° to ~1° in $B^- \rightarrow D(K_S \pi \pi) K^-$ [GGSZ]

Hadronic parameters δ_D and R_D

 The result is more precise than the existing world average values with more restricted allowed region planes

$$\begin{split} R_{K3\pi} &= 0.52^{+0.12}_{-0.10} \\ \delta_D^{K3\pi} &= (167^{+31}_{-19})^\circ \\ R_{K\pi\pi^0} &= 0.78 \pm 0.04 \\ \delta_D^{K\pi\pi^0} &= \left(196^{+14}_{-15}\right)^\circ \end{split}$$

• Uncertainty on γ is around 6° (binned $K3\pi$)

$D_s^+ \to \pi^+ \pi^0 \eta$

PhysRevLett.123.112001

- Retaining 1239 signal event with a purity of (97.7 \pm 0.5)%
- First observation of $D_s^+ \rightarrow a_0(980)^{+(0)}\pi^{0(+)}$, with a statistical significance of 16.2 σ (4.178 GeV data only)
- Branching fraction is larger than other WA decays significantly

Amplitude	ϕ_n (rad)	FF_n
$D_s^+ \rightarrow \rho^+ \eta$	0.0 (fixed)	$0.783 \!\pm\! 0.050 \!\pm\! 0.021$
$D_s^+ \rightarrow (\pi^+ \pi^0)_V \eta$	$0.612 {\pm} 0.172 {\pm} 0.342$	$0.054 \!\pm\! 0.021 \!\pm\! 0.025$
$D_s^+ \rightarrow a_0(980)\pi$	$2.794 \!\pm\! 0.087 \!\pm\! 0.044$	$0.232 \pm 0.023 \pm 0.033$

 $B(D_s^+ \to \pi^+ \pi^0 \eta) = (9.5 \pm 0.28 \pm 0.41)\%$ $B\left(D_s^+ \to a_0(980)_{\pi\eta}^{+(0)} \pi^{0(+)}\right)$ $= (1.46 \pm 0.15 \pm 0.23)\%$

$D_s^+ \to \eta \pi^+ \pi^+ \pi^-$

arXiv:2106.13536

- Signal purity is greater than 85% after selections
- $D_s^+ \rightarrow \eta 2\pi^+\pi^-$ is observed for the first time, BF is $(3.12 \pm 0.13 \pm 0.09)\%$
- $D_s^+ \to a_0 (980)^+_{\pi\eta} \rho (770)^0$ is observed, BF is (0.21 ± 0.08 ± 0.05)%
- First study of WA process with VS final state
- Provide useful input to reduce sys of R(D*)
 → Improve LFU result

Amplitude	Phase	$\mathrm{FF}(\%)$
$a_1(1260)^+(\rho(770)^0\pi^+)\eta$	0.0(fixed)	$55.4 \pm 3.9 \pm 2.0$
$a_1(1260)^+(f_0(500)\pi^+)\eta$	$5.0\pm0.1\pm0.1$	$8.1\pm1.9\pm2.1$
$a_0(980)^+ ho(770)^0$	$2.5\pm0.1\pm0.1$	$6.7\pm2.5\pm1.5$
$\eta(1405)(a_0(980)^-\pi^+)\pi^+$	$0.2\pm0.2\pm0.1$	$0.7\pm0.2\pm0.1$
$\eta(1405)(a_0(980)^+\pi^-)\pi^+$	$0.2\pm0.2\pm0.1$	$0.7\pm0.2\pm0.1$
$f_1(1420)(a_0(980)^-\pi^+)\pi^+$	$4.3\pm0.2\pm0.4$	$1.9\pm0.5\pm0.3$
$f_1(1420)(a_0(980)^+\pi^-)\pi^+$	$4.3\pm0.2\pm0.4$	$1.7\pm0.5\pm0.3$
$[a_0(980)^-\pi^+]_S\pi^+$	$0.1\pm0.2\pm0.2$	$5.1\pm1.2\pm0.9$
$[a_0(980)^+\pi^-]_S\pi^+$	$0.1\pm0.2\pm0.2$	$3.4\pm0.8\pm0.6$
$[f_0(980)\eta]_S \pi^+$	$1.4\pm0.2\pm0.3$	$6.2\pm1.7\pm0.9$
$[f_0(500)\eta]_S \pi^+$	$2.5\pm0.2\pm0.3$	$12.7\pm2.6\pm2.0$

Branching fractions

- D decays
 - New decay: $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ [PhysRevLett.125.141802]
 - Absolute BF: 14 exclusive D decays to η [PhysRevLett.124.241803]
 - New method: Semileptonic tagged $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ [arXiv: 2105.14310]

Decay mode	N _{signal}	$B_{sig}(imes 10^{-4})$	
$D^+ \to K^+ \pi^+ \pi^- \pi^0$	350(22)	11.3(8)(3)	Evidence for CPV X Evidence for $D^+ \rightarrow K^+ \omega$ V
Semileptonic tag $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$	112(12)	10.3(12)(6)	Consistent with previous result, method verified
$D^0 \to K^- \pi^+ \eta$	6126(82)	185.3(25)(31)	Consistent with Belle's
$D^0 \to K_S \pi^0 \eta$	1093(35)	100.6(34)(30)	Better precision
Total $D^0 o \eta X$		$(8.62 \pm 0.35)\%$	\approx inclusive rate (9.5 \pm 0.9)%
Total $D^+ \rightarrow \eta X$		$(4.68 \pm 0.18)\%$	\approx inclusive rate (6.5 \pm 0.7)%

Branching fractions

- Absolute measurement with higher precision
 - D_s decays: 7 $D_s^+ \rightarrow PP$ decays [JHEP08(2020)146]
 - Λ_c decays (4.599 GeV data only): $\Lambda_c^+ \rightarrow p K_S \eta$ [PhyLettB 817 (2021) 136327],

Decay mode	N _{signal}	$B_{sig}(imes 10^{-3})$	
$D_s^+ \to K^+ \eta'$	675(43)	2.68(17)(17)(8)	Higher precision than CLEO's
$D_s^+ \to \pi^+ \eta'$	9912(113)	37.8(4)(2)(1)	results
$D_s^+ \to K^+ \eta$	1841(114)	1.62(10)(3)(5)	
$D_s^+ \to \pi^+ \eta$	19519(192)	17.41(18)(27)(54)	
$D_s^+ \to K^+ K_S$	35977(206)	15.02(10)(27)(47)	
$D_s^+ \to \pi^+ K_s$	2724(83)	1.109(34)(23)(35)	
$D_s^+ \to K^+ \pi^0$	2275(149)	0.748(49)(18)(23)	
$\Lambda_c^+ \to p K_S \eta$	42(9)	4.14(84)(28)	Observed with 5.3σ significance

Summary

- Improved strong phase difference measurement results of $K_S \pi \pi, K_S K K, K 3 \pi, K \pi \pi^0$, their uncertainties on γ measurement have been reduced
- More amplitude analyses of D_s^+ have been done
 - WA processes are studied in VP and SP final states
 - Observe $D_s^+ \rightarrow a_0(980)\pi$ for the first time
- Enhance branching fraction results of charmed hadron decays with higher precision, helping deepen theoretical understandings
- More results will come soon based on the large dataset at high energy THANK YOU!

BACKUP

Strong phase formalism

• The strong phase δ_D and coherence factor R are defined as:

$$r_D^S = A_{\bar{S}}/A_S. \qquad A_S^2 = \int |\mathcal{A}_S(\mathbf{x})|^2 d\mathbf{x},$$
$$R_S e^{-i\delta_D^S} = \frac{\int \mathcal{A}_S^{\star}(\mathbf{x}) \mathcal{A}_{\bar{S}}(\mathbf{x}) d\mathbf{x}}{A_S A_{\bar{S}}}$$

• Equations:

$$\begin{split} &\Gamma(S|CP) = A_{S}^{2} A_{CP}^{2} \left(1 + (r_{D}^{S})^{2} - 2\lambda R_{S} r_{D}^{S} \cos \delta_{D}^{S} \right) \\ &\Gamma(S|S) = A_{S}^{2} A_{\overline{S}}^{2} \left[1 - R_{S}^{2} \right]. \\ &Y_{i}^{S} = H \left(K_{i} + \left(r_{D}^{S} \right)^{2} K_{-i} - 2r_{D}^{S} R_{S} \sqrt{K_{i} K_{-i}} \left[c_{i} \cos \delta_{D}^{S} - s_{i} \sin \delta_{D}^{S} \right] \right) \\ &M_{ij} = h_{\text{corr}} \left[K_{i} K_{-j} + K_{-i} K_{j} - 2\sqrt{K_{i} K_{-j} K_{-i} K_{j}} (c_{i} c_{j} + s_{i} s_{j}) \right] \end{split}$$

Amplitude analysis method

• Amplitude model for each intermediate state:

 $A_n = P_n^1 P_n^2 S_n F_n^1 F_n^2 F_n^3,$

• Amplitude model of total decay:

$$M=\sum c_n A_n, \qquad c_n=\rho_n e^{i\phi_n}$$

• Signal PDF:

$$f_{S}(p_{j}) = \frac{\epsilon(p_{j})|M(p_{j})|^{2}R_{4}(p_{j})}{\int \epsilon(p_{j})|M(p_{j})|^{2}R_{4}(p_{j})dp_{j}},$$

Amplitude analysis results

- D_s^+ decay:
 - $D_s^+ \to K_s \pi^+ \pi^0$ [JHEP06(2021)181]
 - $D_s^+ \to K^+ K^- \pi^+ \pi^0$ [PhysRevD.104.032011]
 - $D_s^+ \to K^+ K^- \pi^+$ [PhysRevD.104.012016]
 - $D_s^+ \to K_s K^- \pi^+ \pi^+$ [PhysRevD.103.092006]
- *D* decay:
 - $D^+ \to K_S K^+ \pi^0$ [PhysRevD.104.012006]
 - $D^0 \to K_S K^+ K^-$ [arXiv:2006.02800]

Branching fraction results

• *D* and Λ_c^+ decays:

Mode		$B(imes 10^{-3})$	Ref
00	$K^+K^-\pi^+\pi^-$	0.69(7)(4)	PhysRevD 102 052006
D	$K_S K_S \pi^+ \pi^-$	0.53(9)(3)	ThysnevD.102.052000
	$K_S K^- \pi^+ \pi^0$	1.32(14)(7)	
	$K_S K^+ \pi^- \pi^0$	0.65(7)(2)	
D^+	$K^+K^-\pi^+\pi^0$	6.62(20)(25)	
D	$K_S K^+ \pi^0 \pi^0$	0.58(12)(4)	
	$K_S K^- \pi^+ \pi^+$	2.27(12)(6)	
	$K_S K^+ \pi^+ \pi^-$	1.89(12)(5)	
	$K_S K_S \pi^+ \pi^0$	1.34(20)(6)	
$D^0 \rightarrow$	$\omega \pi^+ \pi^-$	1.33(16)(12)	PhysRevD.102.052003
$D^+ -$	$\rightarrow \omega \pi^+ \pi^0$	3.87(83)(25)	
$D^{0} - $	$\rightarrow \omega \pi^0 \pi^0$	<1.10	
D+ -	$\rightarrow \eta\eta\pi^+$	2.96(24)(10)	PhysRevD.101.052009
$D^+ o \eta \pi^+ \pi^0$		2.23(15)(10)	
$D^0 \rightarrow$	$\eta \pi^+ \pi^-$	1.20(7)(4)	
Λ_c^+	$\rightarrow K_S X$	99(60)(40)	EurPhysJC(2020)80:935