

Flavour physics with electroweak-penguin and semileptonic decays at Belle and Belle II

<u>Elisa Manoni</u> (Istituto Nazionale di Fisica Nucleare, Sezione di Perugia) for the Belle and Belle II collaborations

5-10 September 2021

Belle and Belle II experiments

• Belle @ KEKB:

- one of the first generation B factories, **771 x 10⁶ BB** pairs collected in ~ 10 years of data taking
- experiment goal: measurement of **CP violation in B** meson system but they did much more

• Belle II @ SUPERKEKB:

- from KEKB to SuperKEKB: aim to collect **50 ab**-1 (~50x Belle) by 2031 reaching ~60 x 10³⁴ cm⁻² s⁻¹ (~30x KEKB)
- Upgrade of Belle detector: similar or better performances wrt Belle in much higher machine background/event rate environments
- Total integrated luminosity as of today: 213 fb⁻¹, >120 fb⁻¹ in February-June 2021
- Current world record instantaneous luminosity = 3.1x10³⁴ cm⁻² s⁻¹ (KEKB world record: 2. 1 x 10³⁴ cm⁻² s⁻¹)

П

Semileptonic and electroweak penguin decays at Belle II

- sector, in a complementary way wrt other experiments
- Belle II physics program.

[will mainly focus on this]

• Large Belle II dataset will allow to continuing investigating the flavour

• Electroweak and semileptonic B decays are among the **golden channels** of

B meson pair reconstruction: Tagged analisys

- Reconstruct one B in the event (B_{taq}) and constraint the kinematic of the other B (B_{sig})
- B_{tag} reconstruction with **Full Event Interpretation** (FEI): multivariate algorithm with hierarchical approach to reconstruct O(200) hadronic and **semileptonic** decay channels
- B_{sig} reconstruction: once the B_{tag} has been reconstructed, search for the signal signature in the rest of the event
- Knowing the initial energy, the missing energy associated to the **neutrinos** can be computed

Hadronic FEI

Keck T. et al. Comput Softw Big Sci (2019) 3: 6.

B meson pair reconstruction: Untagged analysis

- Search for the final state particles consistent with the signature (and eventually constraint the kinematic of the rest of the event)
 - exclusive B_{sig} reconstruction: all final state particles are reconstructed (e.g. $B^+ \rightarrow K^+ \ell^+ \ell^-$), can apply kinematic constraint to ROE that should be compatible with a B meson
 - **inclusive B**_{sig} reconstruction: one/few final state particle(s) are reconstructed (e.g. $B \rightarrow X_s^* \gamma$), the ROE is the other B in the event + what is left from signal reconstruction

Semileptonic decays

$b \rightarrow c \ell v$: latest Belle R(D(*)) measurement

• Sensitive probes for New Physics (leptoquarks, two Higgs doublets etc.) which could impact lepton flavour universality ratios:

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})}$$

- **Belle analysis** (711 fb⁻¹)
 - Tag side reconstructed with Semileptonic FEI, τ in purely leptonic modes
 - Signal extracted from 2D fit to BDT output and E_{ECL} :
 - **E**_{ECL} = neutral energy deposited in the calorimeter not associated to signal nor to tag side, key ingredient in analysis with missing energy
 - Most precise measurements reported to date

 $\mathcal{R}(D) = 0.307 \pm 0.037 \pm 0.016$ $\mathcal{R}(D^*) = 0.283 \pm 0.018 \pm 0.014$

(where $\ell = e$ and μ)

$b \rightarrow c \ell v$: toward R(D(*)) Belle II measurement (II)

• Measurement of normalisation channel with 34.6 fb⁻¹ using hadronic FEI

 $\mathcal{B}(\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_l) = (4.51 \pm 0.41_{\text{stat}} \pm 0.27_{\text{syst}} \pm 0.45_{\pi_s})\%$

In agreement with world average

main systematic from soft π reconstruction, will improved in the future with auxiliary measurements

- Plethora of τ/ℓ ratio measurements from LHCb and Belle
- On **R(D(*))**, (sub)-% level precision can be reached
- with Belle II data

• (a) Belle, one of the dominant systematics from D** background, can be studied in more detail

$b \rightarrow u \ell v$: new Belle measurements

- Challenging due to $B \rightarrow X_c \ell v$ contamination: clear separation through kinematic variables, e.g. lepton momentum endpoint or low M_X
- Full Reconstruction of hadronic B_{tag} (NIM A 654, 432-440 (2011))
- Inclusive measurement: measure the 6 kinematic variables in the phase space of $E_B > 1$ GeV \mathbf{q}^{2} , $\mathbf{E}_{\mathbf{I}}^{\mathbf{B}}$, $\mathbf{M}_{\mathbf{x}'}$, $\mathbf{M}_{\mathbf{x}}^{2}$, $\mathbf{P}_{\mathbf{x}}$, $\mathbf{P}_{\mathbf{x}}^{\mathbf{D}}$ (light-cone momenta: $\mathbf{P}_{\pm} = \mathbf{E}_{\mathbf{x}} \mp |\mathbf{p}_{\mathbf{x}}|$)

Necessary input for future **modelindependent determinations** of |V_{ub}|

Radiative and Electroweak penguin decays

 $b \leq W W \leq s$ u.c +b / s

$b \rightarrow s\gamma$ state of the art

- $b \rightarrow s\gamma$ transitions excellent probe for physics beyond the Standard Model
 - BF ~ 10⁻⁵, large uncertainty in the exclusive measurements due to form factors, which cancels in CP and isospin asymmetries (ratios of rates)
- State of the art, best measurements from **Belle**:

• Can be improved with the larger data set by Belle II in future

[1] Phys. Rev. D 99, 032012 (2019), 711 fb⁻¹, [2] Phys.Rev.D 91 (2015) 5, 052004, 711 fb⁻¹, [3] PRL 103, 241801 (2009), 605 fb⁻¹, [4] Phys. Rev. Lett. 119, 191802 (2017), 711 fb⁻¹

$B \rightarrow X s \gamma$

10-12% **[2]**, **[3]**

consistent with zero [1]

$b \rightarrow s\gamma$: first results at Belle II (I)

- $B \rightarrow K^* \gamma$ branching fraction measurement, with 63 fb⁻¹
 - full reconstruction of the decay chain: charged and neutral K* + high energy photon

- Measured BR consistent with world average values at 1-2 σ
 - CP and isospin asymmetry measurement foreseen in the next iterations of the analysis

$b \rightarrow s\gamma$: first results at Belle II (II)

- $B \rightarrow X_s \gamma$ with untagged method, 63 fb⁻¹
 - Reconstruct only high energy γ
 from signal side, monochromatic particle is expected

- Extract signal from photon energy spectrum
- **Excess** visible in the expected signal region

 $B \rightarrow K^{(*)}$ II: $R(K^{(*)})$ status of the art

- LHCb (arXiv:2103.11769) at 3.1**σ** level

- **R(K)** measured in q² bins, in agreement with SM expectations
- Statistically limited

$B \rightarrow K^{(*)}$ II: status and perspectives at Belle II

- Search for $B^+ \rightarrow K^+ \ell^+ \ell^-$ with <u>63 fb⁻¹</u> of Belle Data
 - rehearsing analysis using $B^+ \rightarrow J/\Psi (\ell^+ \ell^-) K^+$ control sample (same final state but large BR)
- Signal yield extracted from 2D fit to M_{bc} and ΔE , 2.7 σ significance

•
$$N_{sig} = 8.6^{+4.3}_{-3.9}(stat) \pm 0.4(syst)$$

- Long term perspectives for **R(K(*))**:
 - LHCb with full luminosity (~2035, 300fb⁻¹) to full Belle II data sample
 - In the high q² Belle II precision will reach **fe**

• LHCb with full luminosity (~2035, 300fb⁻¹) is expected to have better precision in the low q² wrt

$b \rightarrow sv\overline{v}$: state of the art prior to Moriond2021

• SM predictions:

T. Blake et al, Prog. Part.Nucl. Phys.92, 50 (2017)

BR $(B^+ \to K^+ \nu \bar{\nu})_{\rm SM} = (4.6 \pm 0.5) \times 10^{-6}$,

 $BR(B^+ \to K^{*+} \nu \bar{\nu})_{SM} = (8.4 \pm 1.5) \times 10^{-6},$

- Possible enhancement in NP scenarios, e.g. Leptoquark models explaining flavour anomalies
- BaBar and Belle key ingredient: **hadronic** and **semileptonic tag** side reconstruction

	UL @ 90% CL (10 ⁻⁵)	
B +→ K ⁺ υ $\overline{\nu}$	1.6	<u>BaBar</u> , HAD+
B +→ K ^{*+} $v\overline{v}$	4.0	<u>Belle</u> , HAD
Β∘→Κ° υ <i>υ</i> ¯	2.6	<u>Belle</u> , SL
B •→ K [∗] ^o υ \overline{v}	1.8	<u>Belle</u> , SL

$B^+ \rightarrow K^+ v \bar{v} \bar{v}$ measurement (a) Belle II (1)

NOVEL INCLUSIVE APPROACH on <u>63 fb-1</u> of Belle II data:

- Signal kaon = highest p_T track
- Associate all other tracks and clusters to other B in the event
- Use multivariate approach (2 BDTs in cascade) based on kinematics, event shape and vertexing variables to suppress background
- **Signal efficiency** ~ **4.3%** (SM signal)

Belle II coll., arXiv:2104.12624 submitted to journal

$B^+ \rightarrow K^+ v \bar{v} \bar{v}$ measurement (a) Belle II (II)

- Check data-simulation agreement in BDTs output using $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ control sample
- Data/MC ratio in fit region: 1.06 ± 0.10

Extract signal from simultaneous maximum likelihood fit to on-resonance + off- resonance data (taken 60MeV below Y(4S) resonance) in bins of $P_T(K^+)$ and second BDT (BDT₂):

Signal strength: $\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst})$

- consistent with SM exp (μ =1) at 1 σ
- consistent with background-only hypothesis at 1.3 σ
- Leading systematics: **background normalisation** uncertainty can be also reduced with increasing statistics

$B^+ \rightarrow K^+ v \bar{v} \bar{v}$ measurement (a) Belle II (III)

- Comparing theory and experiments:

 $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = 1.9^{+1.6}_{-1.5} \times 10^{-5}$

- When converted to the same luminosity, our measurement is better^{*)} than semileptonic tagging by 10-20%
- ... and than hadronic tagging by a factor 3.5!

*) assuming the total uncertainty on the branching-fraction scales with $1/\sqrt{L}$

channels in progress

• Room for **improvement** in K⁺ channel, application of inclusive method to **other**

Conclusions

- Belle is still producing interesting results, moreover the accumulated knowledge on MC modelling, analysis techniques, etc. will be beneficial for future measurements by e.g. Belle II or LHCb
- of a "Super B factory"
 - plan to record **50 ab-1**, 30x Belle dataset, by **2031**
- well
- In the SL and EWP sector:
 - **complementarity** with LHCb
- Belle II is starting playing a role in understanding the **flavour physics puzzle**.

• SuperKEKB has set a new world record in instantaneous luminosity of **3.1x10³⁴ cm⁻² s⁻¹** and is entering the regime

• As proven by performed measurements in agreement with world averages, Belle II detector is performing very

preliminary results on channels of interest and competitive measurements based on **new analysis technique**

• $\mathbf{B}^+ \rightarrow \mathbf{K}^+ v \overline{v}$ inclusive measurement in the same ballpark wrt Belle and BaBar ones with ~1/10 Belle statistics

Extra stides

- the low q² wrt to full Belle II data sample,
- In the high q² Belle II precision at **few %** level

• LHCb with full luminosity (~ 2035 , 300 fb^{-1}) is expected to have better precision in

Belle II - LHCb Comparison

Belle II

Higher sensitivity to decays with photons and neutrinos (e.g. $B \rightarrow Kvv, \mu v$), inclusive decays, time dependent CPV in $B_{d_{r}} \tau$ physics.

LHCb

Higher production rates for ultra rare B, D, & K decays, access to all b-hadron flavours (e.g. Λ_b), high boost for fast B_s oscillations.

Overlap in various key areas to verify discoveries.

Upgrades

Most key channels will be stats. limited (not theory or syst.). LHCb scheduled major upgrades during LS3 and LS4. Belle II formulating a 250 ab⁻¹ upgrade program post 2028.

Observable

CKM precision, new physics in CP $\sin 2\beta/\phi_1 (B \rightarrow J/\psi K_S)$

arXiv: 1808.08865 (Physics case for LHCb upgrade II), PTEP 2019 (2019) 12, 123C01 (Belle II Physics Book)

Beauty 2020

+ Important contributions on B and D flavour physics from ATLAS, CMS, BESIII.

Current Belle/ Babar	2019 LHCb	Belle II (5 ab ⁻¹)	elle II Belle II LHCb 5 ab ⁻¹) (50 ab ⁻¹) (23 fb ⁻¹) Belle II Upgrad (250 ab ⁻¹)		Belle II Upgrade (250 ab ⁻¹)	LHCb upgrade II (300 fb ⁻¹)	
<u>PViolation</u>							
0.03	0.04	0.012	0.005	0.011	0.002	0.003	
13°	5.4°	4.7°	1.5°	1.5°	0.4°	0.4°	
4°	_	2	0.6°	_	0.3°	_	
4.5%	6%	2%	1%	3%	<1%	1%	
_	49 mrad	_	_	14 mrad	_	4 mrad	
0.08	0	0.03	0.015	0	0.007	0	
0.15	_	0.07	0.04	_	0.02		
enguins, LFUV							
0.32	0	0.11	0.035	0	0.015	0	
0.24	0.1	0.09	0.03	0.03	0.01	0.01	
6%	10%	3%	1.5%	3%	<1%	1%	
24%, –	_	9%, 25%	4%, 9%	_	1.7%, 4%	_	
_	90%	_	_	34%	_	10%	
_	8.5×10-4	_	5.4×10-4	1.7×10-4	2×10-4	0.3×10-4	
1.2%	_	0.5%	0.2%	_	0.1%	_	
<120×10-9	_	<40×10-9	<12×10-9	_	<5×10-9	_	
<21×10-9	<46×10-9	<3×10-9	<3×10-9	<16×10-9	<0.3×10-9	<5×10-9	
			• Possible	in similar d	channels la	wer nrecisi	

nur channels, lower precision – *Not competitive*.

Phillip URQUIJO

57

Indirect searches: ATLAS

• <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>

- <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-009/fig_01.png</u>
- https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-020/fig 23.png

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: March 2021

0

ATLAS Preliminary $\sqrt{s} = 8, 13 \text{ TeV}$ $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ ℓ, γ Jets $\dagger E_T^{\text{miss}} \int \mathcal{L} dt [fb^{-1}]$ Model Reference Limit ADD $G_{KK} + g/q$ 0 e, μ, τ, γ 1 – 4 j 139 2102.10874 Yes **11.2 TeV** *n* = 2 ADD non-resonant $\gamma\gamma$ 36.7 2γ 8.6 TeV n = 3 HLZ NLO 1707.04147 ADD QBH 2 j 37.0 **8.9 TeV** *n* = 6 1703.09127 _ **9.55 TeV** *n* = 6, *M*_D = 3 TeV, rot BH ADD BH multijet ≥ 3 j 3.6 _ 1512.02586 RS1 $G_{KK} \rightarrow \gamma \gamma$ 2γ 139 $k/\overline{M}_{Pl} = 0.1$ 2102.13405 4.5 TeV _ 36.1 Bulk RS $G_{KK} \rightarrow WW/ZZ$ 2.3 TeV $k/\overline{M}_{Pl} = 1.0$ multi-channel 1808.02380 Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu qq$ 2j/1J 2.0 TeV Yes 139 $k/\overline{M}_{Pl} = 1.0$ 1 e,μ 2004.14636 K mass Bulk RS $g_{KK} \rightarrow tt$ 1 e, μ \geq 1 b, \geq 1J/2j Yes 36.1 mas $\Gamma/m = 15\%$ 1804.10823 2UED / RPP 1.8 TeV Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$ $1 e, \mu \ge 2 b, \ge 3 j$ Yes 36.1 1803.09678 $\mathsf{SSM}\ Z' \to \ell\ell$ 2 e, µ 5.1 TeV 1903.06248 139 SSM $Z' \rightarrow \tau \tau$ 36.1 2 τ 2.42 TeV 1709.07242 mass 36.1 139 139 Leptophobic $Z' \rightarrow bb$ 2 b 2.1 TeV _ 1805.09299 mass 0 e, µ $\geq 1 \text{ b, } \geq 2 \text{ J}$ Yes Leptophobic $Z' \rightarrow tt$ 4.1 TeV $\Gamma/m = 1.2\%$ 2005.05138 mass 1 e, µ Yes 6.0 TeV SSM $W' \rightarrow \ell v$ 1906.05609 — " mas SSM $W' \rightarrow \tau v$ 1τ Yes 36.1 3.7 TeV 1801.06992 2 j / 1 J HVT $W' \rightarrow WZ \rightarrow \ell \nu q q$ model B Yes 139 4.3 TeV 2004.14636 1 e,μ $g_V = 3$ 139 139 HVT $Z' \rightarrow ZH$ model B 0-2 e, µ 1-2 b Yes 3.2 TeV $g_V = 3$ ATLAS-CONF-2020-043 nass $0 e, \mu \ge 1 b, \ge 2 J$ 3.2 TeV HVT $W' \rightarrow WH$ model B $g_V = 3$ 2007.05293 mass LRSM $W_R \rightarrow tb$ multi-channel 36.1 3.25 TeV 1807.10473 mass $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$ LRSM $W_R \rightarrow \mu N_R$ 1 J 2μ 80 5.0 Te\ 1904.12679 37.0 **21.8 TeV** η_L CI qqqq 2 j 1703.09127 Clℓℓqq 2 e, µ 139 35.8 TeV 2006.12946 η_{II} CI eebs 139 1.8 TeV ATLAS-CONF-2021-012 2 e 1 b _ $g_* = 1$ Cl µµbs 2μ 139 2.0 TeV 1 b $g_* = 1$ ATLAS-CONF-2021-012 ≥1 e, μ 2.57 TeV $|C_{4t}| = 4\pi$ CI tttt ≥1 b, ≥1 j Yes 36.1 1811.02305 Axial-vector med. (Dirac DM) 1 – 4 j 2.1 TeV $g_q=0.25, g_{\chi}=1, m(\chi)=1 \text{ GeV}$ $0 e, \mu, \tau, \gamma$ Yes 139 2102.10874 376 GeV $g_q=1, g_{\chi}=1, m(\chi)=1 \text{ GeV}$ Pseudo-scalar med. (Dirac DM) 139 0 e,μ,τ,γ 1 – 4 j Yes 2102.10874 Vector med. Z'-2HDM (Dirac DM) $0 e, \mu$ 2 b Yes 139 3.1 Te $\tan\beta=1, g_Z=0.8, m(\chi)=100 \text{ GeV}$ TLAS-CONF-2021-006 Pseudo-scalar med. 2HDM+a 0 e,μ 2 b Yes 139 520 Ge\ $\tan\beta=1, g_{\chi}=1, m(\chi)=10 \text{ GeV}$ ATLAS-CONF-2021-006 Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM) 0-1 e, μ 1 b, 0-1 J Yes 36.1 3.4 Te $y=0.4, \lambda=0.2, m(\chi)=10 \text{ GeV}$ 1812.09743 Scalar LQ 1st gen ≥ 2 j 1.8 TeV eta=12006.05872 Yes 139 2 e ≥ 2 j 139 Scalar LQ 2nd gen $2\,\mu$ Yes eta=11.7 TeV 2006.05872 1.2 TeV $\mathcal{B}(LQ_3^u \to b\tau) = 1$ 1τ 2 b Yes 139 ATLAS-CONF-2021-008 Scalar LQ 3rd gen $0 e, \mu \ge 2 j, \ge 2 b$ Yes 1.24 TeV $\mathcal{B}(LQ_3^u \to tv) = 1$ Scalar LQ 3rd gen 139 2004.14060 Scalar LQ 3rd gen $\geq 2e, \mu, \geq 1\tau \geq 1 \text{ j}, \geq 1 \text{ b}$ – 139 1.43 TeV $\mathcal{B}(LQ_3^d \to t\tau) = 1$ 2101.11582 $0 \ e, \mu, \ge 1\tau \ 0 - 2 \ j, 2 \ b \ Yes$ 139 1.26 TeV $\mathcal{B}(LQ_3^d \to bv) = 1$ 2101.12527 Scalar LQ 3rd gen VLQ $TT \rightarrow Ht/Zt/Wb + X$ 1.37 TeV SU(2) doublet multi-channel 36.1 1808.02343 VLQ $BB \rightarrow Wt/Zb + X$ 1.34 TeV SU(2) doublet 1808.02343 multi-channel 36.1 mass Yes $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ VLQ $T_{5/3}T_{5/3}|T_{5/3} \rightarrow Wt$ 2(SS)/≥3 *e*,*µ* ≥1 b, ≥1 j 36.1 1.64 TeV 1807.11883 13 mass $1^{'}e, \mu^{'} \geq 1 \text{ b}, \geq 1 \text{ j}$ Yes $\mathcal{B}(Y \to Wb) = 1, c_B(Wb) = 1$ $\mathsf{VLQ} \ Y \to Wb + X$ 36.1 1.85 TeV 1812.07343 mass VLQ $B \rightarrow Hb + X$ 0 e,µ \geq 2 b, \geq 1j Yes 79.8 1.21 TeV singlet, $\kappa_B = 0.5$ ATLAS-CONF-2018-024 VLQ $QQ \rightarrow WaWa$ 1 e,μ ≥ 4 j Yes 20.3 1509.04261 Excited quark $q^* \rightarrow qg$ 139 6.7 TeV 2 j only u^* and d^* , $\Lambda = m(q^*)$ 1910.08447 Excited quark $q^* \rightarrow q\gamma$ 1γ 36.7 5.3 TeV only u^* and d^* , $\Lambda = m(q^*)$ 709.10440 _ Excited quark $b^* \rightarrow bg$ 36.1 1 b, 1 j 2.6 TeV 1805.09299 _ -Excited lepton ℓ^* 3 e, µ 20.3 $\Lambda = 3.0 \text{ TeV}$ 1411.2921 3.0 Te _ _ 1.6 TeV 1411.2921 Excited lepton v^* 3 e,μ,τ $\Lambda = 1.6 \text{ TeV}$ _ _ 20.3 Type III Seesaw 1 e,μ 790 GeV 20008.07949 ≥ 2 j Yes 139 $m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ LRSM Majorana v 2μ 36.1 3.2 TeV 1809.11105 2 j Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 2,3,4 *e*, *µ* (SS) 36.1 870 GeV DY production 1710.09748 Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ DY production, $\mathcal{B}(H_{L}^{\pm\pm} \rightarrow \ell \tau) = 1$ 3 e,μ,τ 20.3 1411.2921 _ DY production, |q| = 5eMulti-charged particles 36.1 1812.03673 1.22 TeV charged particle mass Magnetic monopoles DY production, $|g| = 1g_D$, spin 1/2 2.37 TeV 1905.10130 34.4 pole mass √s = 13 TeV √s = 13 TeV √s = 8 Te\ **10**⁻¹ 10 partial data full data Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. *†Small-radius (large-radius) jets are denoted by the letter j (J).*

ATLAS SUSY Searches* - 95% CL Lower Limits July 2020

		Model	S	ignatur	e j	∫ <i>L dt</i> [fb ⁻	1]	Mass limit					Reference
2	ŝ	$\tilde{q}\tilde{q}, \tilde{q} ightarrow q \tilde{\chi}_1^0$	0 e, µ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss} \ E_T^{ m miss}$	139 36.1	 <i>q̃</i> [10× Degen.] <i>q̃</i> [1×, 8× Degen.] 	0.43	0.71		1.9	$\mathfrak{m}(ilde{\mathcal{X}}_1^0){<}400~\mathrm{GeV}$ $\mathfrak{m}(ilde{q}){=}\mathfrak{m}(ilde{\mathcal{X}}_1^0){=}5~\mathrm{GeV}$	ATLAS-CONF-2019-040 1711.03301
rche		$\tilde{g}\tilde{g},\tilde{g}\!\rightarrow\!q\bar{q}\tilde{\chi}_{1}^{0}$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ε σ σ σ σ		Forbidden		2.35 1.15-1.95	$m(\tilde{\chi}_1^0)=0 \text{ GeV} \ m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
Co Co	ŭ O D	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 e,μ ee,μμ	2-6 jets 2 iets	Fmiss	139 36 1	ğ o			1.2	2.2	$m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ $m(\tilde{\chi}_1^0) = 50 \text{ GeV}$	ATLAS-CONF-2020-047
hicity	MIGNI	$\begin{array}{l} gg, g \to qq(\iota \iota \chi_1) \\ \tilde{g}\tilde{g}, \tilde{g} \to qqWZ\tilde{\chi}_1^0 \end{array}$	0 e, μ SS e, μ	7-11 jets 6 jets	E_T E_T^{miss}	139 139	5 755 75		1	1.15	1.97	$m(\tilde{\chi}_1^0) = 30 \text{ GeV}$ $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ $m(\tilde{\chi}_1^0) = 200 \text{ GeV}$	ATLAS-CONF-2020-002 1909.08457
		$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{ m miss}$	79.8 139	o iso iso			1.25	2.25	$m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 1909.08457
		$\tilde{b}_1\tilde{b}_1, \tilde{b}_1 {\rightarrow} b\tilde{\chi}_1^0/t\tilde{\chi}_1^{\pm}$		Multiple Multiple		36.1 139	$egin{array}{ccc} ilde{b}_1 & Forbic \ ilde{b}_1 \end{array}$	lden Forbidden	0.9 0.74		$m(ilde{\mathcal{X}}_1^0)=200G$	$m(\tilde{\chi}_{1}^{0})$ =300 GeV, BR $(b\tilde{\chi}_{1}^{0})$ =1 ieV, $m(\tilde{\chi}_{1}^{\pm})$ =300 GeV, BR $(t\tilde{\chi}_{1}^{\pm})$ =1	1708.09266, 1711.03301 1909.08457
ks	no	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , μ 2 τ	6 <i>b</i> 2 <i>b</i>	$E_T^{ m miss} \ E_T^{ m miss}$	139 139	$egin{array}{ccc} eta_1 & Forbidden \ eta_1 & eta_1 & \end{array}$		0 0.13-0.85).23-1.35	$\Delta m(ilde{\mathcal{X}}_2^{\prime})$	$(\tilde{\chi}^0_1, \tilde{\chi}^0_1) = 130 \text{ GeV}, m(\tilde{\chi}^0_1) = 100 \text{ GeV}$ $(\tilde{\chi}^0_2, \tilde{\chi}^0_1) = 130 \text{ GeV}, m(\tilde{\chi}^0_1) = 0 \text{ GeV}$	1908.03122 ATLAS-CONF-2020-031
quar	lucti	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> , μ	≥ 1 jet	E_T^{miss}	139	\tilde{t}_1	0 44.0	50	1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	ATLAS-CONF-2020-003, 2004.14060
n. St	proc	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\chi_1^\circ$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 by, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	$1 e, \mu$ $1 \tau + 1 e, \mu, \tau$	3 jets/1 <i>b</i>	E_T^{miss} E_T^{miss}	139 36.1	t_1 \tilde{t}_1	0.44-0.3		1.16		m(𝑋₁)=400 GeV m(𝑣₁)=800 GeV	ATLAS-CONF-2019-017 1803.10178
¹ ge	ect	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2 c	E_T^{miss}	36.1	č		0.85			$m(\tilde{\chi}_1^0)=0~GeV$	1805.01649
376	dii		0 <i>e</i> , <i>µ</i>	mono-jet	$E_T^{\rm miss}$	36.1	\widetilde{t}_1 \widetilde{t}_1	0.46 0.43				$ \begin{array}{l} m(\tilde{t}_1,\tilde{c})\text{-}m(\tilde{\chi}_1^0) = \!$	1805.01649 1711.03301
		$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	1-2 <i>e</i> , μ	1-4 <i>b</i>	E_T^{miss}	139	\tilde{t}_1		0.067-	1.18	~0	$m(\tilde{\chi}_2^0)=500 \text{ GeV}$	SUSY-2018-09
		$t_2 t_2, t_2 \rightarrow t_1 + Z$	3 e, µ	1 <i>b</i>	E_T^{mass}	139		Forbidden	0.86	_	$m(\mathcal{X}_1^0)$ =	=360 GeV, m(\tilde{t}_1)-m(χ_1^o)= 40 GeV	SUSY-2018-09
		$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	3 e, μ ee, μμ	≥ 1 jet	$E_T^{\rm miss}$ $E_T^{\rm miss}$	139 139	$ \begin{array}{ccc} \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} & \ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} & \ 0.205 \end{array} $		0.64			$m(\tilde{\chi}_1^{\pm})=0$ $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})=5~\mathrm{GeV}$	ATLAS-CONF-2020-015 1911.12606
		$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 <i>e</i> ,μ	0.1/0	E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$	0.42	0.74			$m(\tilde{\chi}_1^0) = 0$	1908.08215
>	ct	$\chi_1^- \chi_2^\circ$ via Wh $\tilde{\chi}_1^+ \tilde{\chi}_1^+$ via $\tilde{\ell}_L / \tilde{\chi}$	0-1 e,μ 2 e,μ	2 <i>0</i> /2 γ	E_T^{miss} E_T^{miss}	139 139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^{\pm}$ Forbidden $\tilde{\chi}_1^{\pm}$		0.74			$m(\tilde{\chi}_1^{*}) = 70 \text{ GeV}$ $m(\tilde{\chi}_1^{*}) = 0.5(m(\tilde{\chi}_1^{*}) + m(\tilde{\chi}_1^{0}))$	1908.08215
Ш	dire	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2 τ		E_T^{miss}	139	$\tilde{\tau}$ [$\tilde{\tau}_{\mathrm{L}}, \tilde{\tau}_{\mathrm{R,L}}$] 0.16	-0.3 0.12-0.39				$m(\tilde{\mathcal{X}}_1^0) = 0$	1911.06660
		$\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}},\tilde{\ell}{\rightarrow}\ell\tilde{\chi}_{1}^{0}$	2 e, μ ee, μμ	0 jets ≥ 1 jet	$E_T^{ m miss} \ E_T^{ m miss}$	139 139	${\scriptstyle \widetilde{\ell} \ \widetilde{\ell}}$ 0.256		0.7			$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1908.08215 1911.12606
		$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 <i>e</i> , μ 4 <i>e</i> , μ	$\geq 3 b$ 0 jets	$E_T^{ m miss} \ E_T^{ m miss}$	36.1 139	<i>Ĥ</i> 0.13-0.23 <i>Ĥ</i>	0.55	0.29-0.88			$ BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 $	1806.04030 ATLAS-CONF-2020-040
lived	cles	$\operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1	$egin{array}{ccc} ilde{\chi}_1^{\pm} & \ ilde{\chi}_1^{\pm} & 0.15 \end{array}$	0.46				Pure Wino Pure higgsino	1712.02118 ATL-PHYS-PUB-2017-019
-bu	arti	Stable \tilde{g} R-hadron		Multiple		36.1	ĝ				2.0		1902.01636,1808.04095
<mark>Po</mark>	ď	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$				2.05 2.4	$m(\tilde{\chi}_1^0)$ =100 GeV	1710.04901,1808.04095
		$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0 , \tilde{\chi}_1^{\pm} {\rightarrow} Z \ell {\rightarrow} \ell \ell \ell$	3 <i>e</i> , µ			139	$\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0$ [BR($Z\tau$)=1, BR(Ze)=1]	0.	.625 1.05	5		Pure Wino	ATLAS-CONF-2020-009
		$LFV \ pp \to \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \to e\mu/e\tau/\mu\tau$	<i>еµ,ет,µ</i> τ	0 ioto	rmiss	3.2	$\tilde{\nu}_{\tau}$		0.00	1.00	1.9	$\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$	1607.08079
		$\chi_1 \chi_1 / \chi_2 \rightarrow W W / Z \ell \ell \ell \ell \nu \nu$ $\tilde{g} \tilde{g} \rightarrow a \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow a a a$	4 e,μ 4	-5 large- <i>R</i> je	ets	36.1	$\chi_1 / \chi_2 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ $\tilde{g} [m(\tilde{\chi}^0) = 200 \text{ GeV}, 1100 \text{ GeV}$	/]	0.82	1.33	1.9	$m(\chi_1)=100 \text{ GeV}$ Large λ''_{112}	1804.03602
20	>	88,8 ,994,1,7,1 ,999		Multiple		36.1	$\tilde{g} = [\lambda_{112}'' = 2e-4, 2e-5]$	1	1.0	5	2.0	$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
a	č	$t\tilde{t}, t \to t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs$		Multiple		36.1	\tilde{t} [λ''_{323} =2e-4, 1e-2]	0.55	1.0	5		m $(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
		$ \vec{t}\vec{t}, \vec{t} \rightarrow b\chi_1^{\pm}, \chi_1^{\pm} \rightarrow bbs $ $ \vec{t}, \vec{t}, \vec{t}, \rightarrow bs $		$\geq 4b$ 2 jets $\pm 2h$		139 36 7	\tilde{t}	Forbidden	0.95			$m(\tilde{\chi}_1^{\pm})$ =500 GeV	ATLAS-CONF-2020-016
		$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 <i>e</i> , µ	2 b		36.1	$\tilde{t}_1 = [qq, bs]$ \tilde{t}_1	0.42 0		0.4-1.4	15	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.05544
		-	1 <i>µ</i>	DV		136	\tilde{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10	< λ'_{23k} <3e-9]	1.0		1.6	$BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$	2003.11956

*Only a selection of the available mass limits on new states or phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

 10^{-1}

Mass scale [TeV]

1

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}$

E_{ECL} clean up in $B \rightarrow D^* \ell v$ Belle II analysis

region of the reconstructed neutral cluster.

FIG. 3. Two versions of E_{ECL} are shown: (left) is the version applying detector region dependent energy selection criteria, (right) shows the impact of using a BDT to identify neutral energy depositions from beam background processes. It is based on shower shape variables and the detector