Status of NNLO QCD corrections for process with one or more jets in the final state at the LHC

João Pires^{1,2}

¹ LIP - Laboratório de Física Experimental de Partículas, Lisbon
 ² FCUL - Faculdade de Ciências da Universidade de Lisboa

Particles and Nuclei International Conference - PANIC 2021 Lisbon 08.09.2021

• Summary of Standard Model cross section measurements at the LHC

- Summary of Standard Model cross section measurements at the LHC
- Understanding jet production is a key ingredient for several physics measurements

- Summary of Standard Model cross section measurements at the LHC
- Understanding jet production is a key ingredient for several physics measurements

- Summary of Standard Model cross section measurements at the LHC
- Understanding jet production is a key ingredient for several physics measurements

- Summary of Standard Model cross section measurements at the LHC
- Understanding jet production is a key ingredient for several physics measurements

- Summary of Standard Model cross section measurements at the LHC
- Understanding jet production is a key ingredient for several physics measurements
- Goal to test pQCD at unprecedented collider energies, probe proton structure and search for New Physics

Fully differential NNLO_{QCD}

• Calculations of fully differential NNLO_{QCD} cross sections for 2→2 processes has had remarkable progress over the past years with many different approaches now applied to LHC processes

$$\mathrm{d}\sigma = \sum_{i,j} \int \left[\mathrm{d}\hat{\sigma}^{LO}_{ij} + \left(rac{lpha_s}{2\pi}
ight) \mathrm{d}\hat{\sigma}^{NLO}_{ij} + \left(rac{lpha_s}{2\pi}
ight)^2 \mathrm{d}\hat{\sigma}^{NNLO}_{ij} + \mathcal{O}(lpha_s^3)
ight] f_i(x_1) f_j(x_2) dx_1 dx_2$$

- Many new different schemes developed to consistently achieve the subtraction of IR-singularities at NNLO_{QCD} between real and virtual matrix elements
 - Sector decomposition
 - Binoth, Heinrich; Anastasiou, Melnikov, Petriello
 - Antenna subtraction

Gehrmann, Gehrmann-De Ridder, Glover

- Sector-Improved Residue subtraction
 Czakon; Boughezal, Melnikov, Petriello
- q_T

Catani, Grazzini

• N-jettiness

Boughezal, Focke, Liu, Petriello; Gaunt, Stahlhofen, Tackmann, Walsh

Color-full subtraction

Del Duca, Somogyi, Trocsanyi

- Nested soft-collinear subtraction Caola, Melnikov, Röntsch
- Analytic local sector subtraction
 Magnea, Maina, Pelliccioli, Signorile-Signorile,
 Torrielli, Uccirati
 - Projection to Born

Cacciari, Dreyer, Karlberg, Salam, Zanderighi

Fully differential NNLO_{QCD}

• Calculations of fully differential NNLO_{QCD} cross sections for 2→2 processes has had remarkable progress over the past years with many different approaches now applied to LHC processes

$$\mathrm{d}\sigma = \sum_{i,j} \int \left[\mathrm{d}\hat{\sigma}_{ij}^{LO} + \left(\frac{\alpha_s}{2\pi}\right) \mathrm{d}\hat{\sigma}_{ij}^{NLO} + \left(\frac{\alpha_s}{2\pi}\right)^2 \mathrm{d}\hat{\sigma}_{ij}^{NNLO} + \mathcal{O}(\alpha_s^3) \right] f_i(x_1) f_j(x_2) dx_1 dx_2$$

 Many new different schemes developed to consistently achieve the subtraction of IR-singularities at NNLO_{QCD} between real and virtual matrix elements

Jet final states: *j*+*X*

• Single jet inclusive rates, jet production spectrum differential in jet p_T and rapidity

10

- NNLO calculation with NNLOJET: J.Currie et al. Phys. Rev. Lett. 118 (2017) 072002
- NNLO calculation with Sector Improved Phase Space for Real Radiation: M.Czakon et al. JHEP 10 (2019) 262
- Sub-leading colour effects negligible

Jet final states: *j*+*X*

• Ratios of NNLO pQCD predictions and $\sqrt{s} = 13$ TeV LHC measurements

- ATLAS anti-k_T R=0.4 measurement
- Significant improvement in the description of the data going from NLO to NNLO
- Tension with the data in the of the forward (|y| > 2) high p_{T} range

Jet final states: *j*+*X*

• Ratios of NNLO pQCD predictions and $\sqrt{s} = 13$ TeV LHC measurements

- ATLAS anti- $k_T R=0.4$ measurement
- Significant improvement in the description of the data going from NLO to NNLO
- Tension with the data in the of the forward (|y| > 2) high p_T range

- Smaller impact of higher-order corrections for R=0.7
- Good description of the data at NNLO

- Dijet cross section: $pp \rightarrow 2jets + X$
 - Measured triple differentially by CMS at 8 TeV [arXiv:1705.02628] as a function of
 - Average p_T $p_{T,avg} = (p_{T,1} + p_{T,2})/2$
 - Rapidity separation $y^* = |y_1 y_2|/2$
 - Boost of the dijet system $y_b = |y_1 + y_2|/2$
 - y_b cut probes parton distribution functions at symmetric and asymmetric x_1, x_2 values

- Dijet cross section: $pp \rightarrow 2jets + X$
 - Measured triple differentially by CMS at 8 TeV [arXiv:1705.02628] as a function of
 - Average p_T
 - Rapidity separation
 - Boost of the dijet system

$$p_{T,\text{avg}} = (p_{T,1} + p_{T,2})/2$$
$$y^* = |y_1 - y_2|/2$$
$$y_b = |y_1 + y_2|/2$$

- y_b cut probes parton distribution functions at symmetric and asymmetric x_1, x_2 values

- comparison with triple differential CMS dijet 8 TeV measurement [arXiv:1705.02628]
 - NNLO correction changes both the shape and normalisation of the NLO result
 - Significant reduction in theory uncertainty going from NLO to NNLO
 - $0 < y_b < 1$: good agreement with NNLO \otimes NP \otimes EWK
 - $1 < y_b < 2$: data below NNLO theory prediction
 - PDF effect since matrix element contribution invariant under *y_b* variation

Z + jet final states

• Large cross section and clean leptonic signature. Sensitivity to α_s and gluon PDF

Gehrmann-De Ridder, et al. Phys. Rev. Lett. 117, 022001 (2016) Gehrmann-De Ridder, et al. JHEP 07 (2016) 133

Boughezal et al. Phys. Rev. Lett. 116, 152001 (2016)

Z + jet final states

• Large cross section and clean leptonic signature. Sensitivity to α_s and gluon PDF

Boughezal et al. Phys. Rev. Lett. 116, 152001 (2016)

- Excellent convergence of the perturbative expansion
- NNLO correction below 10% and large reduction in the scale uncertainty of the NNLO prediction
- Significant improvement in the Data vs Theory comparison at NNLO
- Agreement between two NNLO calculations from NNLOJET and N-jettiness subtraction

W + jet final states

Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan Phys. Rev. Lett. 120, 122001 (2018)

Boughezal, Focke, Liu, Petriello Phys. Rev. Lett. 115, 062002 (2015)

W + jet final states

Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgai Phys. Rev. Lett. 120, 122001 (2018)

- NLO corrections between 10–40% with residual scale uncertainties at the level of around $\pm 10\%$
- NNLO corrections at the 5% level change the shape of the NLO result improving the description of the data
- NNLO scale uncertainties at the ±2% level and overlap with the NLO result → good convergence of the perturbative expansion
- Agreement between two NNLO calculations from NNLOJET and N-jettiness subtraction

γ + jet final states

JHEP 04 (2020) 166

Chen, Gehrmann, Glover, Höfer, Huss JHEP 04 (2020) 166

Campbell, Ellis, Williams Phys. Rev. D 96, 014037 (2017)

γ + jet final states

- Smooth cone isolation in MCFM, smooth and hybrid isolation in NNLOJET matching the fixed-cone
- Agreement between two NNLO calculations when using same input settings
- $\mu = p_{T,\gamma}$ favoured as central scale choice in terms of perturbative stability
- Residual scale uncertainties at NNLO typically at the level of 3%
- All V+jet processes know now to NNLO QCD

H + jet final states

Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier JHEP 1610 (2016) 066

Boughezal, Caola, Melnikov, Petriello, Schulze Phys. Rev. Lett. 115, 082003 (2015)

Boughezal, Focke, Giele, Liu, Petriello Phys.Lett.B 748 (2015)

H + jet final states

Boughezal, Caola, Melnikov, Petriello, Schulze Phys. Rev. Lett. 115, 082003 (2015)

Boughezal, Focke, Giele, Liu, Petriello Phys.Lett.B 748 (2015)

- Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier JHEP 1610 (2016) 066
- Improved precision of the Higgs p_T spectrum at NNLO
- Improved description of the Higgs signal under jet cuts, the discrimination power between different Higgs production modes, and background suppression through the application of jet vetoes
- Three different NNLO accurate calculations for H+jet final states performed in the HEFT ($m_t \rightarrow \infty$ limit). Full topquark mass dependence for H+jet known at NLO only
- Substancially larger NNLO corrections observed with respect to V + jet
- Good agreement between NNLO prediction reweighted by exact top-mass dependence at LO and ATLAS data normalized to the total inclusive cross section

H + jet final states - fiducial cuts

	CMS	ATLASI	ATLASII	
Lepton Kinematics				
1st lepton $p_T^{l_1}$ (GeV)	> 20	> 20	> 20	
2nd lepton $p_T^{l_2}$ (GeV)	> 10	> 15	> 15	
3rd lepton $p_T^{l_3}$ (GeV)	_	> 10	> 10	
lepton $p_T^{e(\mu)}$ (GeV)	> 7(5)	> 7(5)	> 5	
Rapidity $ y^{e(\mu)} $	< 2.5(2.4)	< 2.47(2.7)	< 2.7	
Lepton Isolation				
Cone size R^l	0.3	—	_	
$\sum_i p_T^i/p_T^l$ ($i\in R^l$)	< 0.35	—	_	
$\Delta R^{ m SF(DF)}(l_i,l_j)$	> 0.02	> 0.1(0.2)	> 0.1	
Invariant Mass (GeV)				
Z_1 candidate m_{Z_1}	[40, 120]	[50, 106]	[50, 106]	
Z_2 candidate m_{Z_2}	[12, 120]	[12, 115]	[12, 115]	
$m_{l^+l^{\prime-}}$ (SF+DF)	> 4	—	—	
$m_{l^+l^-}~({ m SF})$	_	> 5	> 5	
Four leptons m_{4l}	125	125	125	
Jet Definition				
Algorithm	anti- k_T	anti- k_T	anti- k_T	
Cone size R	0.4	0.4	0.4	
$p_T^j~({ m GeV})$	> 30	> 30	> 30	
Rapidity $ y^j $	< 2.5	< 4.4	< 4.4	
$\Delta R(j,e(\mu))$	_	> 0.2(0.1)	> 0.1	

• Fiducial cuts for final state leptons and jets for the four-lepton decay mode of the Higgs boson

H + jet final states - fiducial cross sections at NNLO

Chen, Gehrmann, Glover, Huss JHEP 1907 (2019) 052

- NNLO corrections sizeable and kinematics dependent
- Substantial reduction of scale uncertainties with respect to NLO to a level of about 10% in most distributions

NNLO QCD jet-predictions beyond $2 \rightarrow 2$ processes

γγ + jet final states

• Use recently derived two-loop leading-colour QCD helicity amplitudes for yy+jet production at hadron colliders

Chawdhry, Czakon, Mitov, Poncelet JHEP 07 (2021) 164

- Reliable description of the diphoton p_T spectrum at NNLO
- Main background to Higgs decay channel

 $pp \to g\gamma\gamma + X$

γγ + jet final states

• Use recently derived two-loop leading-colour QCD helicity amplitudes for yy+jet production at hadron colliders

Chawdhry, Czakon, Mitov, Poncelet JHEP 07 (2021) 164

- Reliable description of the diphoton p_T spectrum at NNLO
- Main background to Higgs decay channel

 $pp \to g\gamma\gamma + X$

Chawdhry, Czakon, Mitov, Poncelet [arXiv:2105.06940]

- Excellent convergence of the perturbative expansion
- Reliable prediction achieved after the inclusion of NNLO effects
- Scale uncertainty at NNLO at the ~1-2% level

Three-jet production final state

• Use recently derived two-loop leading-colour QCD helicity amplitudes for 5-parton scattering at hadron colliders

Chicherin, Sotnikov JHEP 12 (2020) 167 Abreu, Cordero, Ita, Page, Sotnikov JHEP 07 (2021) 095

- Experimental analysis limited by NLO scale uncertainties
- NNLO allows for improved predictions for jet transverse momenta, angular correlations, event-shape observables

Three-jet production final state

• Use recently derived two-loop leading-colour QCD helicity amplitudes for 5-parton scattering at hadron colliders

Chicherin, Sotnikov JHEP 12 (2020) 167 Abreu, Cordero, Ita, Page, Sotnikov JHEP 07 (2021) 095

- Experimental analysis limited by NLO scale uncertainties
- NNLO allows for improved predictions for jet transverse momenta, angular correlations, event-shape observables

1.2

1.1

1.0

0.9

0.8

1.2

1.0

0.8

0.6

 $\mathrm{d}\sigma/\mathrm{d}\sigma^{NLO}(\mu_0)$

2000

Chawdhry, Czakon, Mitov, Poncelet [arXiv:2106.05331]

- NNLO corrections of the order of -15% at low pT increase steadily at high-pT for 1st and 2nd jet pT spectrum
- Three-jet to two-jet ratio prediction stabilised at NNLO with scale uncertainties at the 3% level

Summary

• Great theoretical progress on NNLO QCD calculations for jet cross sections at the LHC

Summary

• Great theoretical progress on NNLO QCD calculations for jet cross sections at the LHC

-	pp→2jet	[Gehrmann-De Ridder, Gehrmann, Glover, Huss, JP 17',18',19']
		[Czakon, van Hameren, Mitov, Poncelet '19]
_	pp→3jet	[Chawdhry, Czakon, Mitov, Poncelet '21]
—	pp→Z+jet	[Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan '15]
		[Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello '15]
—	pp→W+jet	[Boughezal, Liu, Petriello '16]
		[Gehrmann-De Ridder, Gehrmann, Glover, Huss, Walker '17]
_	pp→γ+jet	[Campbell, Ellis, Williams '16]
		[Chen, Gehrmann, Glover, Höfer, Huss '20]
-	pp→γγ+jet	
-	pp→H+jet	
		[Boughezal, Focke, Giele, Liu, Petriello '15]
		[Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier'16]

Summary

• Great theoretical progress on NNLO QCD calculations for jet cross sections at the LHC

—	pp→2jet	[Gehrmann-De Ridder, Gehrmann, Glover, Huss, JP 17',18',19']
		[Czakon, van Hameren, Mitov, Poncelet '19]
_	pp→3jet	[Chawdhry, Czakon, Mitov, Poncelet '21]
_	pp→Z+jet	[Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan '15]
		[Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello '15]
_	pp→W+jet	[Boughezal, Liu, Petriello '16]
		[Gehrmann-De Ridder, Gehrmann, Glover, Huss, Walker '17]
-	pp→γ+jet	[Campbell, Ellis, Williams '16]
		[Chen, Gehrmann, Glover, Höfer, Huss '20]
-	pp→γγ+jet	[Chawdhry, Czakon, Mitov, Poncelet '21]
_	pp→H+jet	
		[Boughezal, Focke, Giele, Liu, Petriello '15]
		[Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier'16]
n		

- Results not covered in this talk