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to cross-sections ….

χ2 (c, Λ) =
1

ndat

ndat

∑
i,j=1

(σi,SMEFT(c, Λ) − σi,exp) (cov−1)ij (σj,SMEFT(c, Λ) − σj,exp)
log-likelihood minimisation



https://lhcfitnikhef.github.io/SMEFT/

arXiv:2105.00006

The SMEFiT framework



Quantifying EFT sensitivity
Quantify impact in fit using information geometry (Fisher discriminant)

Determine most sensitive directions and identify possible flat directions using Principal 
Component Analysis (PVA) & Singular Value Decomposition (SVD)

singular value decomposition

n.b. within our approach flat directions are not a problem, and can also be identified a posteriori

linear

quadratic

n.b. operator normalisation is arbitrary, thus absolute values of Fisher unphysical

normalise to the sum over a given operator: relative Fisher is physical



Operator basis and flavour assumptions

Class Ndof Independent DOFs DoF in EWPOs

four-quark
14

c1,8
Qq

, c1,1
Qq

, c3,8
Qq

,

(two-light-two-heavy)

c3,1
Qq

, c8
tq, c1

tq,

c8
tu, c1

tu, c8
Qu

,

c1
Qu

, c8
td

, c1
td

,

c8
Qd

, c1
Qd

four-quark
5

c1
QQ

, c8
QQ

, c1
Qt

,

(four-heavy) c8
Qt

, c1
tt

four-lepton 1 c¸¸

two-fermion
23

ctÏ, ctG, cbÏ, c(1)
Ï¸1

, c(3)
Ï¸1

, c(1)
Ï¸2

(+ bosonic fields)

ccÏ, c·Ï, ctW , c(3)
Ï¸2

, c(1)
Ï¸3

, c(3)
Ï¸3

,

ctZ , c(3)
ÏQ

, c(≠)
ÏQ

, cÏe, cÏµ, cÏ· ,

cÏt c(3)
Ïq , c(≠)

Ïq ,

cÏu, cÏd

Purely bosonic 7
cÏG, cÏB, cÏW , cÏW B, cÏD

cÏd, cW W W

Total 50 (36 independent) 34 16 (2 independent)

Table 2.5. Summary of the degrees of freedom considered in the present work. We categorize these
DoFs into five disjoint classes: four-quark (two-light-two-heavy), four-quark (four-heavy), four-lepton,
two-fermion, and purely bosonic DoFs. The 16 DoFs displayed in the last columns are subject to 14
constraints from the EWPOs, leaving only 2 independent combinations to be constrained by the fit.
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 Dim-6 SMEFT operators modifying 
Higgs, dibosons, and top quark 
properties: 36 (14) independent 
(dependent) DoFs

Flavour assumption is MFV, with 
 in quark 

sector (special role for top quark) and 

 in lepton sector

 Constraints from LEP EWPOs 
imposed via restrictions in parameter 
space

U(2)q × U(2)u × U(3)d

(U(1)ℓ × U(1)e)3



Experimental data

(incl LHC charge asy)

+ systematic assessment of fit results wrt dataset variations: 
Higgs-only fit, top-only fit, no high-E data, no diboson data …

(incl ptZ in ttZ)

(WW)

(WW & WZ)



linear quadratic

Compare relative impact of each 
process on a given EFT coefficient

Four-fermion operators constrained 
(mostly) by top data, two-fermion and 
purely bosonic (mostly) by Higgs

Sensitivity depends on linear vs 
quadratic, but also LO vs NLO EFT

Can be used at a finer level, e.g. 
identify which differential 
distribution of a given measurement 
carries more weight in the EFT fit

Quantifying EFT sensitivity



singular values of the principal components

flat directions

Identify flat directions (in linear EFT fit) 
and which coefficient combinations have the 
higher variance

Determine which coefficients are 
determined by one or a few processes, and 
which ones only enter at the level of linear 
combinations of many coefficients

Some EFT parameters represent ``natural 
directions’’, other always appear in 
combination with several other coefficients

Powerful tool to understand fit results, 
eventually could be used to fit in the PCA 
basis (though this is not required)

Quantifying EFT sensitivity



Fitting methodology

Median and 95% CL intervals for the 50 EFT parameters considered in this analysis in linear fit


Equivalent results obtained with MCfit and NS: mutual validation of fit outcome



Results: global fit

Agreement with SM at 95% CL for all EFT coefficients except for ctG in quadratic fit

Quadratic corrections bring in sensitivity (more stringent bounds) e.g. for four-fermion operators

Some DoFs exhibit a second ``BSM-like’’ solution in the quartic fit



Results: global fit

bottom Yukawa charm Yukawachromo-magnetic operator

in general, sensitivity of fit results to inclusion of quadratic EFT corrections

1-parameter fits



Results: impact of NLO corrections

NLO QCD corrections 
essential for 
precision EFT fits, 
specially in linear 
case

In several cases new 
sensitivity enters at 
NLO

Impact both in terms 
of shift in best-fit 
value and in 
reduction of fit 
uncertainties



Results: dataset dependence
Global fits consistent, 
but more accurate, with 
top-only or Higgs-only fit

Top data boosts the 
Higgs EFT fit  all across 
the board

Diboson data only 
constraints cWWW

Fit results stable upon 
removal of high energy 
bins (E > 1 TeV)
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Comparison with SFitter (top-only)

global fit marginalised, 68% and 95% CL ranges (not a tuned comparison)

1910.03606, Brivio et al (Sfitter)
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Comparison with FitMaker

Global (marginalised) fits, 68% and 95% CL ranges (nb not a tuned comparison)

2012.02779 , Ellis et al (FitMaker)

Reasonable consistency but also noticeable differences: need benchmark comparisons!

ongoing efforts in LHC EFT WG



18

Summary and outlook

 SMEFiT is a novel framework to carry out global analyses of the SMEFT which exploits (but is 
independent from) ample expertise inherited from (NN)PDF fits

 Successfully deployed for various EFT interpretations, including a global top+Higgs+diboson 
analysis, EFT fits with Bayesian reweighting, and a dimension-six EFT analysis of VBS data

 Not discussed here: how to implement in the fit UV-motivated theory constraints, Bayesian 
inference for very fast EFT projections, interplay with PDF fits, treatment of theory 
uncertainties, matching to UV scenarios …

 Next steps in our program are the addition of new LHC observables (including flavour) and 
then that of non-LHC processes (low-energy, neutrinos, EDMs) as well as to keep improving 
the SM and EFT calculations used in the fit and ensuring a robust methodology that scales to a 
fit involving hundreds of coefficients



Why global SMEFT analyses?
 The SMEFT is the new Standard Model, once we assume that the SM is an effective 
description of Nature valid only up to some cutoff energy Λ

 It provides a systematic, model-independent parametrisation of the low-energy deformations 
of a wide class of UV-complete BSM theories that reduce to the SM

 Complete basis at any given mass-dimension; fully renormalizable, full-fledged QFT: can 
compute higher orders in QCD and EW

 Exploits the full power of SM ``measurements’’ for model-independent BSM searches

ℒSMEFT = ℒSM +
N6

∑
m=1

cm

Λ2
𝒪(6)

i +
N8

∑
n=1

bj

Λ4
𝒪(8)

i + …

 Fulfilling the potential of the SMEFT framework demands global analyses based on a wide 
range of process such that most (all?) directions in the EFT parameter space are covered
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The SMEFiT framework

(N)NLO QCD + NLO EW for SM xsecs

NLO QCD, both linear and quadratic terms, 
with SMEFT@NLO

State-of-the-art parton distributions (avoid 
double counting)

Theory Data

MethodologyValidation

Higgs data (signal strengths, diff, STXS), 
diboson LEP and LHC, all available top quark 

data from Runs I+II, VBS, more in progress

Full experimental correlations included

Two independent fitting methods, MCfit and 
NestedSampling (no reliance on linear 

approx) cross-check each other

Modular structure facilitates adding new 
datasets of better theory calculations

Extensive statistical toolbox to validate results: 
information geometry, PCA, closure testing, …

Full posterior probabilities in the EFT 
coefficients available, likelihoods WIP



MCfit

Fitting methodology
       generate a large sample of Monte Carlo replicas to construct the probability 

distribution in the space of experimental data accounting for all uncertainties

 Determine the SMEFT coefficients replica-by-replica by minimising a cost function

E({c(k)
l }) ≡

1
Ndat

Ndat

∑
i, j=1

(𝒪(th)
i ({c(k)

n }) − 𝒪(art)(k)
i )(cov−1)ij(𝒪(th)

j ({c(k)
n }) − 𝒪(art)(k)

j )
where covariance matrix includes all sources of experimental + theory errors

Nested Sampling statistical mapping of the N-dimensional likelihood profile to 1D

Z = ∫ dNcℒ (data | ⃗c ) π( ⃗c ) = ∫
1

0
dXℒ(X)
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Nested Sampling
• Statistical mapping of multidimensional integral to 1-D

Z =

Z
dnaL(data|~a)⇡(~a) =

Z 1

0
dXL(X)

where the prior volume dX = ⇡(~a)dna

Feroz et al. arXiv:1306.2144 
[astro-ph] 
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Figure 1: Cartoon illustrating (a) the posterior of a two dimensional problem; and (b) the trans-
formed L(X) function where the prior volumes, Xi, are associated with each likelihood, Li.

be recovered by integration over its survival function (a result evident from integration by parts)
we have (unconditionally):

Z =

Z 1

0

X(�)d�. (5)

When L(X), the inverse of X(�), exists (i.e., when L(⇥) is a continuous function with connected
support; Chopin and Robert 2010) the evidence integral may thus be further rearranged as:

Z =

Z 1

0

L(X)dX. (6)

Indeed, if L(X) were known exactly (and Riemann integrable1), by evaluating the likelihoods,
Li = L(Xi), for a deterministic sequence of X values,

0 < XN < · · · < X2 < X1 < X0 = 1, (7)

as shown schematically in Fig. 1, the evidence could in principle be approximated numerically
using only standard quadrature methods as follows:

Z ⇡ Ẑ =
NX

i=1

Liwi, (8)

where the weights, wi, for the simple trapezium rule are given by wi =
1
2(Xi�1�Xi+1). With L(X)

typically unknown, however, we must turn to MC methods for the probabilistic association of prior
volumes, Xi, with likelihood contours, Li = L(Xi), in our computational evidence estimation.

3.1 Evidence estimation
Under the default nested sampling algorithm the summation in Eq. (8) is performed as follows.
First Nlive ‘live’ points are drawn from the prior, ⇡(⇥), and the initial prior volume, X0, is set to

1We give a brief measure-theoretic formulation of NS in Appendix C.
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Zi ⇠
X

i

Liwi

wi =
1

2
(Xi�1 �Xi+1)

• Posterior samples obtained as a by-product of computing evidence Z

• Samples directly from prior space to locate region of maximum likelihood

• Advantage: no need for cross-validation or a minimizer (fit algorithm) 

• Disadvantage: exponential increase in runtime as prior volume increases

Samples directly from prior space to locate regions of 
maximum likelihood

Main advantage: no need for optimiser (fitting)

Exponential increase in runtime as prior volume increases


