
SERVERLESS COMPUTING FOR 
DATA-PROCESSING ACROSS PUBLIC 

AND FEDERATED CLOUDS

Instituto de Instrumentación para 
Imagen Molecular

Universitat Politècnica de València
Spain

IBERGRID 2019
September 23-26, Santiago de Compostela, Spain

Sebastián Risco, Alfonso Pérez, Miguel Caballer, Germán Moltó



INDEX

• Motivation
• Goals
• Components
• Architecture
• Use case
• Conclusions
• Future work

2



MOTIVATION

• Public Cloud Serverless services are evolving from the initial FaaS 
approach to also embrace the execution of containerised 
applications.
• AWS Fargate, Google Cloud Run, AWS Batch.

• Scientific applications may require specific resources (large 
amount of memory or CPUs, accelerated devices, etc).
• Private or Federated Clouds not always fulfil the requirements.

• Federated storage for data persistence remains suitable for 
scientific applications.

3



GOALS

• Execute hybrid Serverless workloads using public Clouds for 
computing and federated storage for data persistence.
• AWS services to run containerised data-processing applications and EGI 

DataHub as a storage back-end.

• Automatically delegate longer executions, as well as those 
requiring specialised hardware (GPUs), to AWS Batch.

• Demonstrate the feasibility of this approach through a use case in 
video processing.
• GPU-based computing in the public Cloud to dramatically accelerate object 

recognition.

4



COMPONENTS

• AWS Lambda:
• Public Functions as a Service (FaaS) platform.
• No infrastructure provision or configuration management
• Automated elasticity.
• Supports Java, Go, PowerShell, Node.js, C#, Python, and Ruby code.
• Function limits: 3008 MB Memory and 15 minutes execution timeout.

• AWS Batch:
• Execute jobs as containerized applications running on Amazon ECS.
• Granular job definitions → specify resource requirements, IAM roles, 

volumes, GPU access, etc.
• Dynamic compute resource provisioning and scaling.
• No timeout.

5



COMPONENTS

• Serverless Container-aware 
ARchitectures (SCAR):
• Run containerised applications on 

AWS Lambda.
• Defines an event-driven 

file-processing programming 
model.

• Integrated with AWS Batch in 
order to support long-running 
jobs and accelerated computing.

A. Pérez, G. Moltó, M. Caballer, and A. Calatrava,“Serverless computing for container-based
architectures”, Futur. Gener. Comput. Syst., vol. 83, pp. 50–59, Jun. 2018.

6

https://github.com/grycap/scar

https://github.com/grycap/scar


COMPONENTS

• EGI Data Hub:
• Service to make data discoverable and available in an easy way across all 

EGI federated resources, based on Onedata:
• High-performance data management solution that offers unified data access 

across globally distributed environments and multiple types of underlying 
storage.

• Allows users to share, collaborate and perform computations on the stored data 
easily.

• OneTrigger:
• Tool to detect Onedata file events in order to trigger a webhook.
• It can run as a Serverless function using AWS Lambda and CloudWatch 

Events.

7



COMPONENTS

• FaaS Supervisor (Core component of SCAR and OSCAR):
• Manages input and output.
• Handles the execution of the user-defined script.
• Loads Docker containers in AWS Lambda environments.
• Integrated with Onedata.

8



ARCHITECTURE

9



USE CASE

10

YOLO (You Only Look Once):

• Real-time object detection system.

• Uses Darknet, an open source neural network framework.
• Supports CPU and GPU computation.

• Can process images or videos.



USE CASE

11

Why is GPU recommended for video processing?

• Processing a single image could take few seconds using a CPU.

• If we want the result in images:
• The video can be split into images.
• Images can be quickly processed in parallel functions using a Serverless 

platform (over CPU).

• If we want the result as a video:
• It has to be processed as a single job.
• OpenMP can be used to accelerate processing in multi-core CPUs → It's still 

very slow.



USE CASE

12



• SCAR function definition file

USE CASE

13

Docker image
User-defined script

Create input bucket in 
AWS S3

Create HTTP endpoint in 
AWS API Gateway

Enable AWS Batch mode

AWS Batch configuration

Onedata required 
environment variables



USE CASE

14

• Integration with EGI DataHub (Onedata)



USE CASE

15



USE CASE

16



USE CASE

17



USE CASE

18



CONCLUSIONS

• Delegating computational jobs to public Cloud providers is 
convenient for certain cases (even though when private or 
federated resources are available).

• Serverless allows to reduce costs in longer or accelerated 
executions.

• Hybrid workflows enable fully leveraging of cloud capabilities in 
order to run scientific applications.

19



FUTURE WORK

• Support additional storage back-ends.

• OneTrigger improvements:
• More efficient file upload checking.
• Integrate OneTrigger-Lambda with the CLI to automate deployment.
• Send events to functions directly (without API Gateway).

• Integrate more use cases.

• We are accepting contributions at:

20

https://github.com/grycap/scar
https://github.com/grycap/faas-supervisor

https://github.com/grycap/onetrigger 

https://github.com/grycap/scar
https://github.com/grycap/faas-supervisor
https://github.com/grycap/onetrigger


CONTACT & 
ACKNOWLEDGEMENTS

Sebastián Risco - serisgal@i3m.upv.es
Alfonso Pérez - alpegon3@upv.es 
Miguel Caballer - micafer1@upv.es 
Germán Moltó - gmolto@dsic.upv.es 
Instituto de Instrumentación para Imagen Molecular
Universitat Politècnica de València
Camino de Vera s/n
46022, Valencia
SPAIN

The authors would like to thank the Spanish “Ministerio de Economía, Industria y 
Competitividad” for the project “BigCLOE” with reference number 
TIN2016-79951-R.
This work has been partially funded through the EGI Strategic & Innovation Fund.

21

mailto:serisgal@i3m.upv.es
mailto:alpegon3@i3m.upv.es
mailto:micafer1@upv.es
mailto:gmolto@dsic.upv.es

