
DEEP-Hybrid-DataCloud is funded by the Horizon 2020 Framework Programme
of the European union under grant agreement number 777435

Orchestrating complex deployments
with the PaaS Orchestrator

MARICA ANTONACCI, ALESSANDRO COSTANTINI
marica.antonacci@ba.infn.it, alessandro.costantini@cnaf.infn.it

Istituto Nazionale di Fisica Nucleare (INFN)

Ibergrid 2019
Santiago de Compostela, Spain
September 2019

mailto:marica.antonacci@ba.infn.it
mailto:marica.antonacci@ba.infn.it
mailto:alessandro.costantini@cnaf.infn.it
mailto:alessandro.costantini@cnaf.infn.it

● PaaS layer

● Deployment workflow

● Orchestrator architecture

● Usage scenarios

● APIs and tools

Outline

● The PaaS Orchestrator is based on the developments carried out during the

INDIGO-DataCloud project

○ advanced features and important enhancements are being implemented in the

framework of three projects: DEEP-Hybrid DataCloud, eXtreme-DataCloud and

EOSC-Hub

● It allows to coordinate the provisioning of virtualized compute and storage

resources on different Cloud Management Frameworks (like OpenStack,

OpenNebula, AWS, etc.) and the deployment of dockerized services and

jobs on Mesos clusters.

● The PaaS orchestrator features advanced federation and scheduling

capabilities ensuring the transparent access to heterogeneous cloud

environments and the selection of the best resource providers based on

criteria like user’s SLAs, services availability and data location
3

PaaS Orchestration Overview

4

INDIGO Platform as a Service Layer

● The Orchestrator receives the deployment request (TOSCA template)

● The Orchestrator collects all the information needed to deploy the virtual infra/service/job

consuming others PaaS μServices APIs:

● SLAM Service: get the prioritized list of SLAs per user/group;

● Configuration Management DB: get the the capabilities of the underlying IaaS

platforms;

● Data Management Service: get the status of the data files and storage resources

needed by the service/application

● Monitoring Service: get the IaaS services availability and their metrics;

● CloudProviderRanker Service (Rule Engine): sort the list of sites on the basis of

configurable rules;

● The orchestrator delegates the deployment to IM, Mesos or QCG-Computing based on

the TOSCA template and the list of sites.

● Cross-site deployments are also possible.

5

The deployment workflow

6

PaaS Orchestrator Architecture

7

Scenario I: deployment of Virtual Infrastructure

8

Use case: frontend + elastic batch system

9

● The PaaS orchestrator interacts with:

○ Marathon to deploy, monitor and scale

Long-Running services, ensuring that

they are always up and running.

○ Chronos to run user applications

(jobs), taking care of fetching input

data, handling dependencies among

jobs, rescheduling failed jobs.

● Marathon and Chronos are two powerful

frameworks that can be deployed on top of

a Mesos Cluster.

● Mesos is able to manage cluster resources

(cpu, mem) providing isolation and sharing

across distributed applications (frameworks)

Scenario II: Deployment of managed services/jobs

10

Use-case: execution of batch-like jobs

Features using TOSCA Templates

● Parameter sweep

○ Multiple job submission

● Job Resubmission

○ Configurable

● Job dependencies

○ managed automatically

● Data-aware Scheduling

○ Based on the data location

11

Use-case: deployment of a long-running service

12

Long-running service: generic template

13

Use-case: DEEPaaS service deployment

Deep Learning prediction modules included in the DEEP-HybridDataCloud Open

Catalog (https://marketplace.deep-hybrid-datacloud.eu/) can be deployed

through a TOSCA template

● the DEEPaaS API is deployed as long running service on Mesos cluster

● the API can be accessed from the web browser and used to make predictions

● Elastic Galaxy Cluster

○ a Galaxy portal is automatically deployed from TOSCA and

configured to use a SLURM elastic cluster

● Elastic Mesos Cluster

○ a complete HA Mesos cluster with Chronos/Marathon framework

is automatically deployed from a TOSCA template

● Jupyter with K8s Cluster

● HTCondor cluster on Mesos (DODAS)

● Big-data Analysis Cluster (Spark on Mesos)

● Deep Learning training/prediction services (DEEPaaS)

14

Ready-to-use templates

Advanced features

15 15

Deployment retry strategy

16

● The Orchestrator implements a

trial-and-error mechanism that

allows to re-schedule the

deployment on the next available

cloud provider from the list of

candidate sites.

● Example: deployment fails

because of exceeding the quota

on the chosen site

Application secrets management

17

The problem: user applications need access to sensitive data (e.g. password

for dbs, storage service credentials, etc.)

The solution: introduce a secrets manager, Hashicorp Vault, in the PaaS

architecture to store the sensitive information safely.

The Orchestrator writes the secrets in Vault on behalf of the user, then the

Marathon plugin retrieves the secrets from Vault and makes them available to

the application container (via environment variables)

GPU scheduling and Integration with HPC

18

● The PaaS Orchestrator supports the deployment of virtual machines and

containers that need to access specialised hardware devices, namely

GPUs, to provide the processing power required by tasks like Machine

Learning algorithms

○ the GPU requirements (num, vendor, model) can be specified in the TOSCA

template

○ the Orchestrator automatically selects the sites/services that provide the needed

capabilities (flavors, gpu support)

● The Orchestrator includes a plugin for submitting jobs to HPC facilities

○ exploits the QCG-Computing service (PSNC) that exposes REST APIs to submit

jobs to the underlying batch systems

Support for hybrid deployments of elastic clusters

19

Scenario I:

● exploits L2 network

provided by the sites

Scenario II:

● dedicated private

nets are

automatically

provisioned

Frontend

IaaS Cloud Site A

CLUESLRMS

WN

IaaS Cloud Site B

VRouter
Central point

VPN tunnels

VRouter
Client

WN

VRouter
Client

WN

VRouter
Client

WN

VRouter
Client

VRouterFrontend

IaaS Cloud Site A

CLUESLRMS

WN

IaaS Cloud Site B

VRouter
Centralpoint

WN WNWN

VRoute
r

User Private NetVPN TunnelsUser Private Net

SCENARIO I

SCENARIO II

20

Further features and enhancements

The PaaS Orchestrator has been enhanced to:

● schedule the processing jobs near the data

The PaaS Orchestrator is being extended in order to:

● Integrate a data management policy engine

(QoS and Data Life Cycle)

○ move data between distributed storages

○ specify different QoS for replicas

● Support workflows for data

pre-processing at ingestion

● Create a deployment:

○ POST request to /deployments - parameters:

■ template: string containing a TOSCA YAML-formatted template

■ parameters: the input parameters of the deployment (map of strings)

● Get deployment details:

○ GET request to /deployments:

■ curl 'http://localhost:8080/deployments/<uuid>'

● Delete deployment:

○ DELETE request

■ curl 'http://localhost:8080/deployments/<uuid>'

● Documentation: http://indigo-dc.github.io/orchestrator/restdocs/#overview

21

Orchestrator APIs

export ORCHENT_TOKEN=<your access token>

export ORCHENT_URL=<orchestrator_url>

usage: orchent <command> [<args> ...]

Commands:

help [<command>...]

Show help.

depls

list all deployments

depshow <uuid>

show a specific deployment

depcreate [<flags>] <template> <parameter>

create a new deployment

depupdate [<flags>] <uuid> <template> <parameter>

update the given deployment

deptemplate <uuid>

show the template of the given deployment

depdel <uuid>

delete a given deployment
22

Installation guide:
https://indigo-dc.gitbooks.io/orchent/content/admin.html
User guide:
https://indigo-dc.gitbooks.io/orchent/content/user.html

Orchent: The Orchestrator CLI

The Orchestrator Dashboard

23

Simple graphical user interface for the Orchestrator

2

1

3

Select
deployment
type

Configure input parameters

Submit deployment request

Authentication
via INDIGO
IAM

List your deployments

24

Get deployment details and outputs

25

View the deployment log

26

Useful for debugging purposes.
You can also download the log file clicking
on the ‘download’ button at the end of
the page.

27

● TOSCA Templates

○ Use-cases templates: https://github.com/indigo-dc/tosca-templates

○ Example templates: https://github.com/indigo-dc/tosca-

types/tree/master/examples

● Ansible Roles

○ Ansible Galaxy: https://galaxy.ansible.com/indigo-dc/

● Docker images

○ Docker hub:

https://hub.docker.com/u/indigodatacloudapps/dashboard/

Resources

https://github.com/indigo-dc/tosca-templates
https://github.com/indigo-dc/tosca-types/tree/master/examples
https://galaxy.ansible.com/indigo-dc/
https://hub.docker.com/u/indigodatacloudapps/dashboard/

Building and Deploying Complex
Applications with Alien4Cloud

DEEP-Hybrid-DataCloud funded by the EU Horizon 2020 Framework Programme; grant agreement 777435

Ibergrid 2019
Santiago de Compostela, Spain
September 2019

Marica Antonacci, Alessandro Costantini
on behalf

Andy S. Alic, Miguel Caballer, Germán Moltó
asalic@upv.es, micafer1@upv.es, gmolto@dsic.upv.es

Universitat Politècnica de València (UPV)

mailto:asalic@upv.es
mailto:micafer1@upv.es
mailto:gmolto@dsic.upv.es
mailto:gmolto@dsic.upv.es

Building/composing TOSCA Topologies
Alien4Cloud Overview (1)

● Web app for Composition/management of TOSCA topologies
○ Scratch or Existing Template

● Open Source under Apache 2.0
○ https://github.com/alien4cloud/alien4cloud

● Very low barrier for non-experts
○ Topologies with minimal TOSCA knowledge
○ Easy deployment/interaction with

orchestrator deploying/managing
the actual infrastructure

● Java REST backend (SpringBoot) /
HTML5 frontend (AngularJS)

● Extensible via Plugins
○ Easy to add new orchestrators to create

topologies built/composed via the UI

https://github.com/alien4cloud/alien4cloud

Building/composing TOSCA Topologies
Alien4Cloud in DEEP

● Extension of the Existing Version
○ DEEP fork @ https://github.com/indigo-dc/alien4cloud
○ Improvements like outputs handling, TOSCA functions parsing,

● Implementation of a plugin to connect to the IndigoDC
Orchestrator

○ Orchestrator @ https://github.com/indigo-dc/orchestrator

○ Plugin @ https://github.com/indigo-dc/alien4cloud-deep
■ Repo with Dockerized A4C, plugin, TOSCA normative types, and DEEP

custom types

● Support for Oauth2
○ Via A4C dependency @ https://github.com/indigo-dc/spring-social-oidc

https://github.com/indigo-dc/alien4cloud
https://github.com/indigo-dc/orchestrator
https://github.com/indigo-dc/alien4cloud-deep
https://github.com/indigo-dc/spring-social-oidc

Building/composing
Alien4Cloud UI - Configure Orchestrator
Endpoint

Building/composing
Alien4Cloud UI - Create New Users

Building/composing
Alien4Cloud UI - Components

Building/composing
Alien4Cloud UI - New TOSCA Topology

Building/composing
Alien4Cloud UI - GUI composition

Building/composing
Alien4Cloud UI - Text composition

Building/composing
Alien4Cloud deploy

Thank You

All names, logos, and brands are property of their respective owners in the European
Union member states and/or other countries. All company, product and service names
used on this presentation can be considered fair use for teaching purposes.

