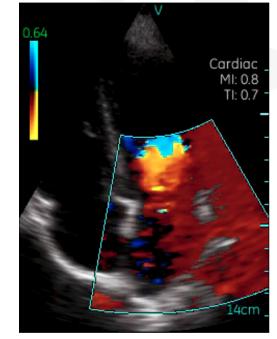
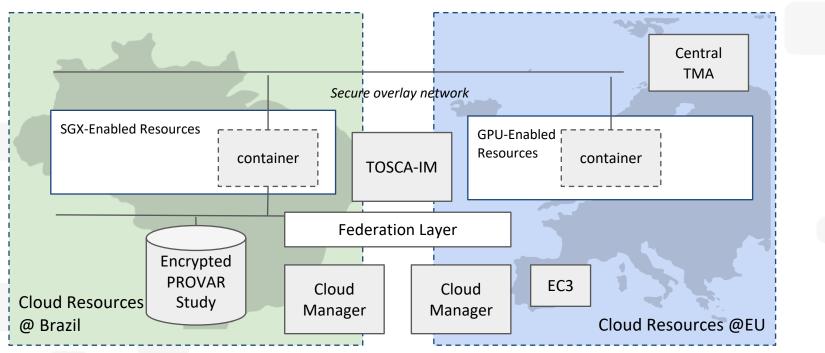


Adaptive, Trustworthy, Manageable, Orchestrated, Secure Privacy-assuring Hybrid, Ecosystem for REsilient Cloud Computing


Machine Learning Pipelines on Medical Imaging

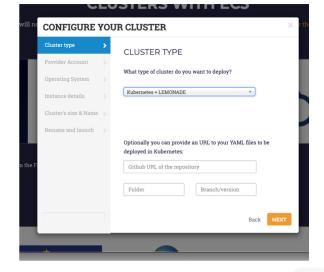
Ignacio Blanquer (UPV), Eduardo Camacho-Ramos, Ana Jiménez-Pastor, Ángel Alberich-Bayarri (QUIBIM), Walter Dos Santos, Prof. Wagner Meira Jr. (UFMG)

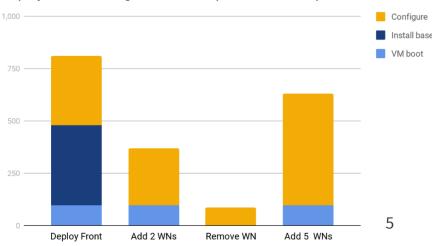
- The Rheumatic Heart Disease (RHD) is a disease that can be easily treated in its early stages, but may produce enormous damage to the heart if remains untreated, including severe sequelae and death.
- The challenge is to process a large set of medical images, along with additional metadata and clinical information, efficiently and securely, to extract features that could be used to assist and even automate diagnosis.
- Data comes from the PROVAR Echocardio data
 - 4.021 studies (4.035 Normal + 180 Borderline + 26 Definite)
 - 59.018 240×320 MP4 videos of 1-3 seconds.
 - To be classified into three categories according to the WHF criteria: Normal, Borderline and Definite RHD.
- Challenges:
 - Unbalance of the cases.
 - Noise and low quality of the echocardio images.
 - No information on the view.



- Sensitive data should remain in the Brazilian geographical boundaries and confidentiality should be preserved.
- Computing requires accelerators and may not be available within the boundaries where the sensitive data is located.
- Parallel execution should be provided.
- Repeatability and reproducibility should be a main goal.
- Flexible and dynamic environment.
- Simplified interfaces for non-ICT experts.

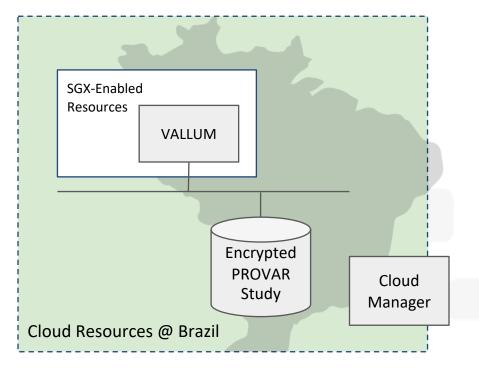
- The underlying infrastructure is a federated cloud
 - Using fogbow (www.fogbowcloud.org) on OpenStack and OpenNebula.
 - With a Federated Network to provide a coherent network space among nodes.
 - Heterogeneous resources: SGX-enabled and GPU nodes.
- Using EC3⁽¹⁾ and Infrastructure Manager⁽²⁾ to deploy a virtual infrastructure.




⁽¹⁾ <u>https://marketplace.eosc-portal.eu/services/elastic-cloud-compute-cluster-ec3</u>

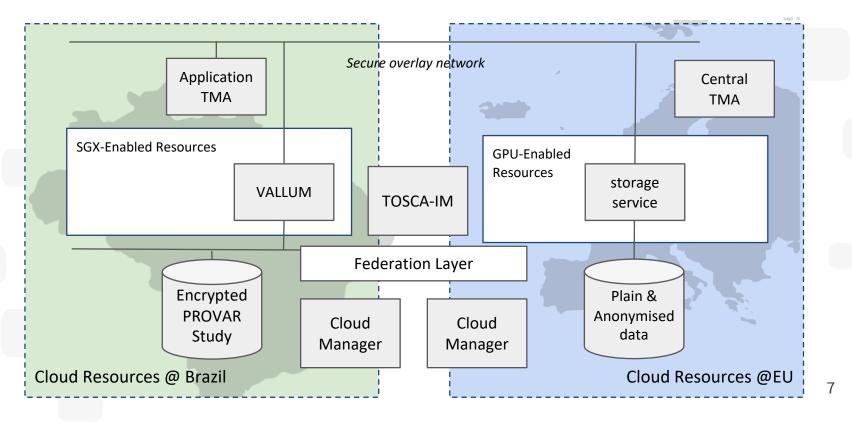
⁽²⁾ <u>https://marketplace.eosc-portal.eu/services/infrastructure-manager-im</u>

- The virtual infrastructure is managed by an elastic Kubernetes cluster spawn over the federated network
 - Containers and services are accessible from both sites but only through the federated network.
 - Resources are properly tagged (SGX and GPU capabilities and Brazil / Europe) so K8s applications are placed in the correct resource.
 - Infrastructure is described as code⁽³⁾.
- K8s Front-end is deployed and nodes are being powered on as the applications are deployed, creating the request for specific resources.

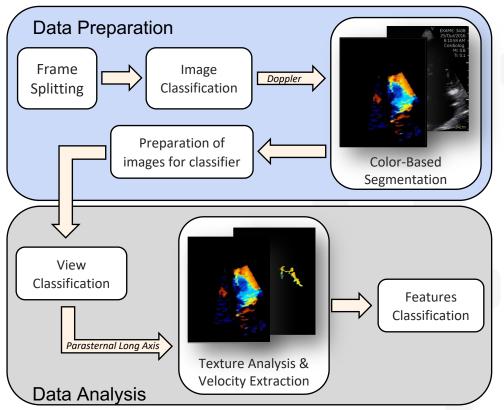


Deployment & Configuration Time (time in seconds)

Secure storage at Brazilian side

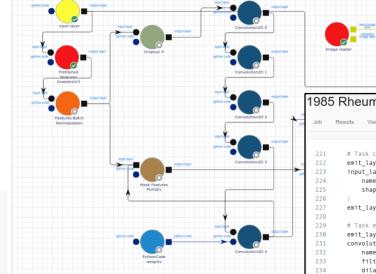

- A secure storage is deployed at the Brazilian side
 - It uses Vallum⁽⁴⁾, a service that provides on-the-fly annonymisation based on policies.
 - It masks (or blurs) the fields that are marked as sensitive to different profiles of users.
 - It relies on an HDFS filesystem for the files and on SQL databases for the structured data.

- It runs the data anonymisation and sensitive data access on enclaves running on SGX-enabled containers, so they can securely run even in untrusted cloud resources
 - Data remains encrypted in disk.


- Data is requested to Vallum from external users, but they will only access to partially anonymised data
 - Anonymised data (~1TB) is copied where the computing accelerators are placed.

Building the models for the Estimation pipeline.

- Videos are split into frames and classified by color inspection.
 - A color-based segmentation using k-means clustering extracts the color pixels from the Doppler images
- Images are classified according their acquisition view using a CNN
 - Parasternal long axis view has proven to be relevant to obtain an accurate classification.
- First & second order texture analyses characterize the images by the spatial variation of pixel intensities.
 - Besides texture features, blood velocity information is also obtained.



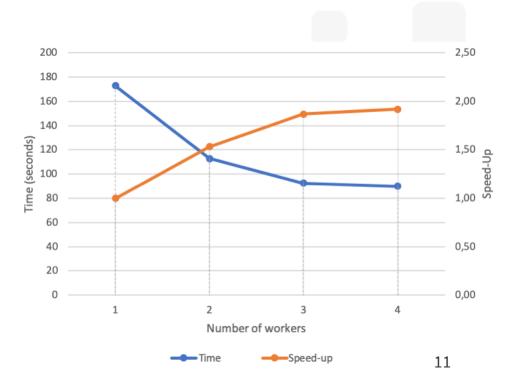
 Finally, all the extracted features are classified through machine learning techniques in order to differentiate between RHD positive and healthy subjects.

Adaptive, Trustworthy, Manageable, Orchestrated, Secure Privacy-assuring Hybrid, Ecosystem for REsilient Cloud Computing

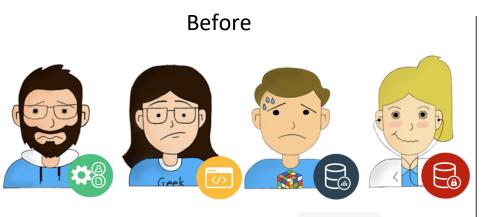
Coding the pipeline: LEMONADE

- The pipeline is developed using LEMONADE⁽⁵⁾
 - LEMONADE provides a GUI and a Machine Learning librarie to develop data analytics pipelines.

- Pipelines can be run interactively or transformed into executable code.
- Code can be interactively run or further embed into services to be exposed for production.
- A model building pipeline and an estimation pipeline are developed.


985 Rheumatic Heart Disease Classification # Task cf71eec0-f09d-41c4-825b-a748496383c6 emit laver before add('cf71eec0-f09d-41c4-825b-a748496383c6', emit event) input_layer = Input name='input laver shape=(16, 112, 112, 3) emit_layer_added('cf71eec0-f09d-41c4-825b-a748496383c6', emit_event) # Task e39b2a83-33f0-4f1a-aff1-fef8351719fc emit layer before add('e39b2a83-33f0-4f1a-aff1-fef8351719fc', emit event) convolution3d 1 = Conv3D name='convolution3d 1 filters=64 dilation rate=(1, 1, 1) kernel size=(3, 3, 3), 236 use bias=True padding='same 238 activation='linear)(input laver) 240 convolution3d_1.trainable = True 241 emit_layer_added('e39b2a83-33f0-4f1a-aff1-fef8351719fc', emit_event) 242 243 # Task ffbc14e3-1785-4333-bb57-e73633047d49 244 emit_layer_before_add('ffbc14e3-1785-4333-bb57-e73633047d49', emit_event) 245 maxpooling3d_1 = MaxPooling3D(246 name='maxpooling3d_1' 247 pool size=(1, 2, 2). 248 strides=(1, 2, 2), 249 padding='valid' 250 trainable=True)(convolution3d 1) emit_layer_added('ffbc14e3-1785-4333-bb57-e73633047d49', emit_event) 254 # Task 7caa5f93-ef38-49ab-bdd4-1df83ed97f4b emit layer before add('7caa5f93-ef38-49ab-bdd4-1df83ed97f4b', emit event 256 convolution3d_2 = Conv3D name='convolution3d 2' 258 filters=128. dilation rate=(1, 1, 1) kernel size=(3, 3, 3), 261 use bias=True,

- Model building can run in parallel using MPI and Horovod
 - The model is build with keras using fp16 compression for the reduction operations.
 - Experiments have been used with 1 and 2 working nodes equipped with a TESLA V100 GPU connected through PCI Passthrough to the working nodes and the containers which run the processes.
 - Execution time shows a reduction with the addition of a second GPU but the speed-up is limited by the penalty of using an overlay network.



- An experiment has been performed for the classification of 8 patients on 1, 2 and 4 virtual compute nodes
 - Job code is extracted and executed through Jupyter on an ipyhton cluster that shares the filesystem.
 - Each node is a Kubernetes Pod executing a Docker container in a different Virtual Machine to reduce resource contention.
 - Speed-up is moderated (up to 2) but usability is high.

Conclusions

- Need to manually configure the environment.
- Lack of reproducibility.
- Qualitative appraisal of the trustworthiness.

- Manual analysis of GDPR/LGDP risks
- Need to trust on the storage provider.
- Anonymisation level is qualitative.

- Applications templates for complex & distributed applications.
- Provide a repeatable way to deploy the whole application.
- Quantitative measure of trustworthiness

- Self-assessment of GDPR/LGDP.
- Trustable storage environment even on an untrusted provider.
- Quantitative anonymisation level.