The University of Manchester

## - BBBSRC

# ALFRED: a novel image analysis application to inform mathematical modelling of microtubule networks in nerve cells 

## How did I get here?



How did I get here?


## How did I get here?

## How did I get here?



## How did I get here?



## How did I get here?

What am I actually working on?

## Axons are key to nervous system function



## Axonal Microtubules



## Local Axon Homeostasis



## Local Axon Homeostasis



## Local Axon Homeostasis



Are MTs the culprits of axon swellings?


## What am I measuring?



Curvature $=$ fitting on the boundaries
Eccentricity = circularity of interspaces
But some of these values are not readily obtained. How do we get them?

## Length

Length: Algorithm that tries to find the shortest connected path between two selected nodes in a graph (e.g. 1 to 3)


Each point of the skeletonised image becomes a node in the graph

## Problem: bridging artefactual gaps in real images



If there's a gap, it defaults to straight line

## Curvature

Pixel angles


Gaussian Filters


Polynomial fitting


Pattern fitting


## Curvature

$\kappa(t)$ is obtained using a parametrisation of the skeleton of the image

$$
\kappa(t)=\frac{1}{R(t)}
$$

$$
\kappa(t)=\frac{\left|x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)\right|}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}}
$$



Remove any junctions that the skeleton might have

## Curvature

## Fourier Transform

## Gaussian Filter



Point to point multiplication and final sum reduction produces the desired derivatives

```
Time complexity: O(N)
Space complexity: O(N)
On average, is much smaller.
```

```
Time complexity: O(N)
Space complexity: O(N)
```


## Curvature



## Curvature



Cirelos, 0.0056 p $x^{-1}$


## Curvature



## Curvature



## Curvature

## Fourier Transform

## Gaussian Filter

Good for course grained analysis
and general curvature of the
image. Faster and occupies less
space.

Doesn't allow a detailed analysis, works better if the image has a constant curvature.

Good for fine grained analysis, highly used in image analysis.

```
Depends on resolution, although it
    can be bypassed. Takes longer
    and occupies more space.
```

The best solution lies somewhere in the middle: Using one to tune the other!

## Curvature for Straightness?



Curvature mith outllors


## Curvature for Straightness?



## Straight Segments

Using Hough transform - the parameter space of $\rho$ (distance of the line to the origin) and $\theta$ (angle to $x$-axis).

$$
\rho=x \cos \theta+y \sin \theta
$$



The ones on the same line are going to give more emphasis on the $\rho$ and $\theta$ of the real straight lines


## Straight Segments



On the real image, extract the various straight segments along axons.

## Straight Segments



Number of segments: 10 Straightness Index: 97.72\%

# ALFRED 

## Advanced Labelling, Fitting, Recognition \& Enhancement of Data

Initial image processing and creation of a skeleton, from any type of biological image format

Recognises both MTs \& disorganised regions

User-friendly
implementation on MATLAB of the previous methods combined with existing ones

User Manual:
Online Documentation and User Guide for the software

## ALFRED <br> Advanced Labelling, Fitting, Recognition \& Enhancement of Data



# ALFRED <br> Advanced Labelling, Fitting, Recognition <br> \& Enhancement of Data 



## The Future of ALFRED



## The Future of ALFRED

## Machine Learning:

Use an unsupervised method to div de known phenotypes into different groups and run new images through to see how they are classified.

## Understand biological value of paramenters

$$
\begin{array}{r}
\text { Biological analysis } \\
\text { with ALFRED paper }
\end{array}
$$

Nuno Nobre
Dr. André Voelzmann


Supervisors:
Prof. Andreas Prokop
Prof. Matthias Heil
Dr. Simon Pearce


Dr. Ines Hahn
Dr. Yu Ting Liew
Dr. Cristina Melero Jill Parkin


