

The University of Manchester

ALFRED: a novel image analysis application to inform mathematical modelling of microtubule networks in nerve cells

Beatriz Costa-Gomes, Nuno Nobre, André Voelzmann, Matthias Heil, Andreas Prokop

What am I actually working on?

Axons are key to nervous system function

Axonal Microtubules

Local Axon Homeostasis

Local Axon Homeostasis

Voelzmann et al., Brain Res Bulletin 126 (2016), 226ff..

Are MTs the culprits of axon swellings?

What am I measuring?

Curvature = fitting on the boundaries

Eccentricity = circularity of interspaces

But some of these values are not readily obtained. How do we get them?

Length

Length: Algorithm that tries to find the shortest connected path between two selected nodes in a graph (e.g. 1 to 3)

Each point of the skeletonised image becomes a node in the graph

Problem: bridging artefactual gaps in real images

If there's a gap, it defaults to straight line

Pixel angles

Gaussian Filters

 $\kappa(t) = \frac{|x'(t)y''(t) - y'(t)x''(t)|}{(x'(t)^2 + y'(t)^2)^{3/2}}$ $\kappa(t)$ is obtained using a parametrisation of $\kappa(t) = \frac{1}{R(t)}$ Remove any skeleton, a pixeljunctions that the Gaussian Filters Fit a Fourier Series of

Fourier Transform

Gaussian Filter

Fit a Fourier Series of one term to each of the lines

Vindow of a certain size centred in one point, for all the points in the image

First order Fourier series: $f(x) = a_0 + a_1 \cos(wx) + b_1 \sin(wx)$ Point to point multiplication and final sum reduction produces the desired derivatives

Time complexity: O(N) Space complexity: O(N) On average, is *much* smaller.

Time complexity: O(N) Space complexity: O(N)

N: number of points in the image Big-O notation: worst case scenario

Individual Curvature Histogram 0.09 Circles Waves Non-rotated Crossed Waves 0.08 Rotated Crossed Waves 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 2 4 6Curvature(px⁻¹) 8 10 12 < 10⁻³

Circles, 0.0085 px⁻¹

Fourier Transform

Good for course grained analysis and general curvature of the image. Faster and occupies less space.

Gaussian Filter

Good for fine grained analysis, highly used in image analysis.

Doesn't allow a detailed analysis, works better if the image has a constant curvature. Depends on resolution, although it can be bypassed. Takes longer and occupies more space.

The best solution lies somewhere in the middle: Using one to tune the other!

Curvature for Straightness?

Squares "Curvature" 0.0144px⁻¹

Curvature with outliers

Curvature without outliers

Curvature for Straightness?

Squares "Curvature" 0.0144px⁻¹

Straight Segments

Using Hough transform - the parameter space of ρ (distance of the line to the origin) and θ (angle to x-axis).

$\rho = x\cos\theta + y\sin\theta$

Take any two points in an image and plot the straight line between them.

Calculate both ρ and θ and plot them

The ones on the same line are going to give more emphasis on the ρ and θ of the real straight lines

Do this for a the pairs of points

Straight Segments

On the real image, extract the various straight segments along axons.

Straight Segments

Number of segments: 22 Straightness Index: 18.43%

Number of segments: 10 Straightness Index: 97.72%

ALFRED

Advanced Labelling, Fitting, Recognition & Enhancement of Data

Initial image processing and creation of a skeleton, from any type of biological image format

Recognises both MTs & disorganised regions

User-friendly implementation on MATLAB of the previous methods combined with existing ones

User Manual: Online Documentation and User Guide for the software

ALFRED

Advanced Labelling, Fitting, Recognition & Enhancement of Data

ALFRED

Advanced Labelling, Fitting, Recognition & Enhancement of Data

The Future of **ALFRED**

Further validate the software

Comparison against different softwares Different types of cells & different image acquisition methods Compare to human classification and image extraction

ALFRED and curvature algorithm paper

The Future of ALFRED

Machine Learning:

Use an unsupervised method to divide known phenotypes into different groups and run new images through to see how they are classified.

> Understand biological value of paramenters

> > Biological analysis with ALFRED paper

Nuno Nobre Dr. André Voelzmann

Supervisors: **Prof. Andreas Prokop Prof. Matthias Heil** Dr. Simon Pearce

Dr. Ines Hahn Dr. Yu Ting Liew Dr. Cristina Melero Jill Parkin

