Run 2 Results on Heavy lons from ATLAS Experiment

Helena Santos, LIP, FCUL

LIP 2019, February 14

Heavy Ion Collisions

Final states providing insight into the QGP:

Global observables

Particle correlations - initial conditions, geometry, collective behaviour

Hard probes Colorless objects: electroweak bosons – reference, nPDFs Colored objects: hadrons, jets, quarkonia – Debye screening, partonic energy loss

Collisions Centrality

HI collision's dynamics controlled by impact parameter "*b*"

Transverse energy, E_T, deposited in Forward Calorimeter.

The nuclear thickness function, T_{AA} , and number of participants in a collision, N_{part} , for each centrality interval is estimated using the Glauber model.

Flow

Anisotropic spatial collective motion is described by a Fourier expansion of particle

distribution in azimuthal angle ϕ

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\phi - \Phi_n)$$

High order coefficients are associated with fluctuations of nucleon positions in the

v_n{2PC} in Xe+Xe and Pb+Pb collisions

ATLAS-CONF-2018-011

Xe is smaller \rightarrow larger EbyE fluctuations \rightarrow larger eccentricities

than Pb

→ larger viscous effects (1711.08499)

- *v_n* increases from central to peripheral collisions, peaking around 30–40% centrality.
- v_2 and v_3 are clearly larger in central Xe+Xe collisions.

v_n in Xe+Xe and Pb+Pb collisions - ratios

6

- Ratios have weak dependence in $p_{T^*}^b$ (0.5 < p_T^a < 5.0 GeV)
- Ratios for *v*₂ decrease with decreasing centrality becoming smaller than unity by 10–15% centrality.
- For *v*₃ the Xe+Xe values are larger than Pb+Pb over 0–30% centrality.
- Hydrodynamic predictions (1711.08499) describe data well.

• Significant harmonic (v₂-v₅) observed in Pb+Pb collisions reflecting

the nuclear overlap and fluctuations of the initial nucleon-nucleon positions.

- The long range "ridge" and "cone" structures in two-particle correlation function at low p_T can be explained by flow effects.
- Hydrodynamics (also) describes flow in Xe+Xe collisions.

Electroweak probes

W/Z, photons, are not supposed to interact with QGP.

Can be used as benchmarks for in-medium effects.

Can also be used to check models of collision geometry (Glauber). Their production is expected to scale with number of nucleon-nucleon collisions.

Systematic study of partonic energy loss in Z and photon associated to jets.

Nuclear Modification Factor - *R*_{AA}

• Nuclear modification factor quantifies the change of yields, relatively to the production in vacuum.

• Any deviation from unity points to suppression or enhancement of yields.

Electroweak probes in Pb+Pb collisions – Z⁰¹⁰

ATLAS-CONF-2017-010

- R^z_{AA} is expected to be greater than unity by about 2.5% due to isospin effect.
- Consistent with unity within uncertainties. Excess in the most peripheral bin?

Electroweak probes in Pb+Pb collisions - W[±] ¹¹

- Yields of W bosons divided by T_{AA} are independent of centrality.
- $W^+ \rightarrow \mu^+ \nu$ yields are systematically ~10% larger than $W^- \rightarrow \mu^- \overline{\nu}$ yields.
- Good agreement with predictions, both that ascribe free-nucleon PDF and nPDF, for $|\eta_u| < 1.4$. Three sigma at forward.

Electroweak probes - LbyL

p,Pb p,Pb p,Pb p,Pb p,Pb p,Pb

Evidence of LbyL scattering: 4.4 (3.8) σ

 σ_{fid} = 70 ± 24 (stat) ± 17 (syst) nb, in agreement with SM predictions.

Stay tuned for Pb+Pb 2018 data analysis (more than factor 2 statistics) and LHC Run 4 with increased tracking acceptance.

12

$\gamma\gamma \to \mu^+\mu^- \ in \ non-UPC$

13

Dimuon pairs resulting from photonuclear interactions occurring simultaneously with the hadronic collision.

- Data reveals balance in energy, but acoplanarity broadning with centrality.
- **STARlight** agrees in peripheral, but not in central collisions.

$\gamma\gamma \to \mu^+\mu^- \ in \ non-UPC$

Phys. Rev. Lett. 121 (2018) 212301

if broadmimg results ftom small k_{T} transfer:

$$\langle \alpha^2 \rangle = \langle \alpha^2 \rangle_0 + \frac{1}{\pi^2} \frac{\left\langle \vec{k}_{\rm T}^2 \right\rangle}{\left\langle p_{\rm T\,avg}^2 \right\rangle}$$

Centrality	$\langle N_{\rm part} \rangle$	$p_{\text{Tavg}}^{\text{RMS}}$ [GeV]	Gaussian fit			Convolution fit
			$\sigma_A(\times 10^3)$	$\sigma_{\alpha}(\times 10^3)$	$k_{\rm T}^{\rm RMS}$ [MeV]	$k_{\rm T}^{\rm RMS}$ [MeV]
0-10%	359±2	7.0 ± 0.1	$17.9^{+1.0}_{-0.9}$	3.3±0.4	66±10	70±10
10-20%	264±3	7.7±0.4	$13.6^{+1.2}_{-1.0}$	2.3±0.3	40±7	42±7
20-40%	160±3	7.4±0.3	$17.2^{+0.4}_{-0.4}$	2.5 ± 0.2	48±6	44±5
40-80%	47±2	6.8±0.3	$16.1^{+0.1}_{-0.1}$	2.0 ± 0.1	35±4	32±2
> 80%	_	7.0±0.3	$15.5^{+0.1}_{-0.1}$	1.40 ± 0.03	-	-

• Modifications are qualitatively consistent with re-scattering of the muons while crossing the QGP.

Electroweak probes in p+Pb collisions – γ

 Inclusive prompt photons in p+Pb collisions at 8.16 TeV.

 $E_{\rm T}^{\ \gamma} > 25 \text{ GeV}$ $E_{\rm T}^{\ iso} < 4.8 \text{ GeV} + 4.2 \text{x} 10^{-3} E_{\rm T}^{\ \gamma} \text{ [GeV]}$

- R_{pPb} consistent with unity at central and forward rapidity.
- *R*_{pPb}<1 for η* < -2 due to isospin effects.
- Data consistent within uncertainties with both free nPDF and with the small effects expected from a nuclear modification of the parton densities.
- Data disfavours large suppression due to E-loss.

15

ATLAS-CONF-2017-072

- Photons, Z and W^{\pm} productions consistent with expectations from T_{AA} scaling.
- No visible modifications of nuclear PDFs within uncertainties.
- Evidence of LbyL scattering: 4.4 (3.8) σ.
- Modifications in the acoplanarity of dimuons produced in non-UPC by magnetic fields are qualitatively consistent with re-scattering while crossing the QGP.

Quarkonia

Quarkonia suppression is predicted by lattice QCD calculations

Prompt and Non-prompt Charmonia in Pb+Pb¹⁸

Dimuon invariant mass

Dimuon pseudo-proper time

R

Prompt J/ψ: direct production; feed-down from excited states.Modified by colour screening and regeneration in the QGP.Non-prompt J/ψ: decays from B-hadronsEnergy loss of the b-quarks in the QGP.

$J/\psi R_{pPb}$ and R_{AA} as a function of p_T

19

Quarkonia in p+Pb collisions is a probe of cold nuclear matter effects

- $R_{\rm pPb}$ is consistent with unity.
- J/ ψ is strongly suppressed in Pb+Pb; prompt and non-prompt mechanisms have different p_T dependence.

 $R_{pPb} = \frac{1}{208}$

$J/\psi R_{AA}$ as a function of N_{part}

Eur. Phys. J. C 78 (2018) 762

Strong centrality dependence for both **prompt** and **non-prompt** J/ψ , with similar suppression pattern.

$\psi(2S)$ to J/ ψ as a function of N_{part}

Eur. Phys. J. C 78 (2018) 762

• Prompt $\psi(2S)$ to J/ ψ ratio increases in central collisions, supporting the hypothesis of $\psi(2S)$ being produced by regeneration. More data is needed.

• Non-prompt $\psi(2S)$ to J/ ψ ratio is consistent with unity, suggesting that both mesons originate from b-quarks hadronising outside the QGP.

Prompt J/ ψ *R*_{AA} as a function of *p*_T

Eur. Phys. J. C 78 (2018) 762

22

Data at high $p_{\rm T}$ well described by **color screening** and **energy loss** scenarios, but they miss low $p_{\rm T}$.

Different models on **color screening** and **energy loss** agree at low $p_{\rm T}$, but fail at high $p_{\rm T}$.

Prompt ψ **(2S) to** J/ψ **as a function of** N_{part} ²³

Eur. Phys. J. C 78 (2018) 762

Both models foresee the decrease in the double ratio, but fail in describing simultaneously all centralities.

Bottonium Fits to Dimuon Invariant Mass²⁴

Quarkonia R_{pPb} as a function of $p_T and y^*$ 25 Eur. Phys. J. C 78 (2018) 171

p+Pb collisions are important to disentangle effects due to quarkonium interactions with QGP from those atributed to CNM.

- R_{pPb} is consistent with unity for $p_T > 9 \text{ GeV} \rightarrow \text{important reference}$ for the suppression at high p_T in larger collision systems (Pb+Pb and Xe+Xe).
- Models provide qualitatively good description.

Messages from Quarkonia

- Strong centrality dependence, and with similar suppression, for both prompt and non-prompt J/ψ .
- Modest dependence on |y| (in backup). Different p_T dependence.
- Data at high $p_{\rm T}$ well described by color screening and energy loss models. But these miss low $p_{\rm T}$.
- Indications of prompt $\psi(2S)$ regeneration in central collisions.
- Non-prompt $\psi(2S)$ to J/ ψ ratio is consistent with unity.
- Υ (1S) and J/ ψ R_{pPb} is consistent with unity for $p_T > 9$ GeV.

Jets as probes of hot matter

QGP is opaque to coloured partons. How do parton showers in the hot and dense medium differ from those in vacuum?

What is expected:

- Partons lose energy, resulting in jet "quenching".
- Jets probe the very first phase of the collision
- \rightarrow they carry relevant information about the QGP.

Different observables allow to disentangle the nature of the Eloss:

- Dijet Asymmetry, Acoplanarity
- Correlation with colour neutral probes (Z and photons)
- Differential inclusive jet suppression
- Jet structure and properties of quenched jets

Inclusive jet production in Pb+Pb

28

arXiv:1805.05635

Per event jet yields in Pb+Pb collisions, divided by $\langle T_{AA} \rangle$, as a function of jet p_T

for different centrality intervals.

Jet R_{AA} as a function of p_T for different centrality intervals.

- Jets are suppressed by a factor of two in central Pb+Pb collisions with clear dependence on transverse momentum, $p_{_{T}}$.
- Peripheral collisions (60 70%) show also significant suppression.

Jet *R*_{AA} compared with theory

arXiv:1805.05635

Linear Boltzmann Transport (LBT - 1503.03313) Soft Collinear Effective Field Theory (SCETg - 1509.02936) Effective Quenching (EQ - 1504.05169)

All models reproduce the trend shown by the data. EQ and SCETg (with exception for g=2.2) clearly underestimate the suppression.

$R_{AA}^{|y|}$ to the $R_{AA}^{|y|<0.3}$ as a function of |y|

Two effcts competing (1504.05169):

1 - Fraction of quark jets increases with |y| at fixed jet $p_{T;}$ Quarks should lose less energy than gluons 30

arXiv:1805.05635

 \rightarrow Increase R_{AA} with |y|

2 - Spectra become steeper with increasing |y|

 \rightarrow Decrease R_{AA} with |y|

For high $p_{\rm T}$ the effect of the steeper spectra dominates.

Charged Hadron *R*_{AA} **in Xe+Xe and Pb+Pb**³¹

ATLAS-CONF-2018-007

Note different x-axis

Qualitatively similar

R_{AA} as a function of p_T in different channels ³²

Suggestion of high p_{T} universality from suppression of several different probes \rightarrow prompt J/ ψ may also be sensitive to parton energy loss.

Dijet asymmetry in Pb+Pb and pp collisions arXiv:1706.09363 [hep-ex]

Centrality dependence of $x_{J} = p_{T2}/p_{T1}$ for jet $100 < p_{T1} < 126$ GeV Dijet asymmetry probes differences in quenching the two parton showers.

differences in quenching between ★ The asymmetry in peripheral collisions is well compatible with pp collisions * The asymmetry increases with

collision centrality

Dijet asymmetry in Xe+Xe and pp collisions arXiv:1706.09363 [hep-ex]

p_{T1} dependence of $x_J = p_{T2}/p_{T1}$ in central collisions

Discrepancy between Pb+Pb and pp dilutes with increasing p_{T1}.

Much smaller modification at high P_T^{Lead} .

Leading contribution from LIP ATLAS group

Dijet asymmetry in Xe+Xe and Pb+Pb

ATLAS-CONF-2018-007

35

Both Xe+Xe and Pb+Pb results are not corrected for detector effects. Black line represents Xe+Xe smeared to Pb+Pb.

→ Difference in underlying event fluctuations has minimal impact in the result.

Consistence between Xe+Xe and Pb+Pb in both centrality and ΣE_{T}^{FCal} ranges.

No dependence on geommetry of the collision within uncertainties.

Electroweak probes: γ + jet p_{T} balance

Phys. Lett. B 789 (2019) 167

36

Fully corrected for detector effects

- pp-like peaked $x_{Jvp} = p_T^J / p_{T,*}^{\gamma}$ independently of jet $p_{\rm T}$, in peripheral Pb+Pb.
- Increasing double peak shape with jet $p_{\rm T}$ in central.

Jet structure

37

Internal jet structure shows enhancement of particle yields at low z; enhancement at high z; depletion at intermediate.

Messages from Jets

- Inclusive jets in Pb+Pb are suppressed relatively to p+p up to a factor of 2.
- Hadrons also suppressed (as expected), with characteristic dependence on the transverse momentum.
- Internal jet structure shows enhancement of particle yields at low z; enhancement at high z,depletion at intermediate.
- Enhancement of asymmetric dijets in Xe+Xe and Pb+Pb, relatively to p+p as the centrality increases.
- Clear dependence with the p_T of the leading.

Outlook

Stay tuned to the results provided by the 1.75^{-nb} recorded by ATLAS during 2018 Pb+Pb @ 5.02 TeV data acquisition. A factor of 3.5 w.r.t. 2015. Peak luminosity of 6e27 cm⁻²s⁻¹ reached several times

=> good prospects for the Run 3.

 $\gamma\gamma$ → ee candidate in ultra-peripheral collision in 2018 Pb+Pb dataset. $p_T(e_1) = 8.2$ GeV and $p_T(e_2) = 7.4$ GeV; $m_{ee} = 16$ GeV. Not covered in this talk, but unmissable:

- Jet fragmentation functions at 5.02 TeV
 1805.05424
- Flow cumulants 1807.02012
- J/ψ elliptic flow 1807.05198
- R_{AA} and flow of HF muons
 - 1805.05220

https://twiki.cern.ch/twiki/bin/view/AtlasPu blic/HeavyIonsPublicResults

ATLAS Performance

No dependence of the muon reconstruction efficiency on centrality.

$J/\psi R_{AA}$ as a function of p_T

non-prompt fraction

33

- Nearly independent on centrality.
- Slight difference from pp.

Upsilon R_{pPb}

arXiv1709.03089

$J/\psi R_{AA}$ as a function of |y| and centrality ³⁷

Modest dependence on rapidity for both

prompt and non-prompt J/ψ.

Charged Hadron *R*_{AA} **in Xe+Xe and Pb+Pb**³⁸

ATLAS-CONF-2018-007

• Note different x-axis

• Qualitatively similar

Charged Hadron *R*_{AA} **in Xe+Xe and Pb+Pb**³⁹

ATLAS-CONF-2018-007

- R_{AA} is very similar at low pT in central collisions.
- Otherwise Xe+Xe is less suppressed than Pb+Pb.

Charged Hadron *R*_{AA} **in Xe+Xe and Pb+Pb**⁴⁰

ATLAS-CONF-2018-007

Same colours, same energy deposited in FCal

Electroweak probes: γ + jet *p*_T balance

Phys. Lett. B 789 (2019) 167

10

Two-particle correlations in Xe+Xe collisions ³¹

ATLAS-CONF-2018-011

Flow harmonics, v2—v5, have been measured in Xe+Xe at 5.44 TeV using 2-PC

• Short-range ($\Delta\eta$, $\Delta\phi \sim 0,0$) correlations in all centralities are due to non-flow processes.

• Long-range ($\Delta\eta$ large) correlations are the result of the global anisotropy of the event.

Jet Reconstruction in the Detector

Jets are reconstructed by computational algorithms that group "towers" of energy deposited in the calorimeters.

The Underlying Event ("background") is estimated event-by-event, excluding the jet candidate.

Jet Reconstruction

- Underlying event estimated and subtracted for each longitudinal layer and for 100 slices of $\Delta\eta$ = 0.1:

 $E_{T,subt}^{cell} = E_T^{cell} - \rho x A^{cell}$

 ρ is energy density estimated event-by-event from average over $0{<}\phi{<}2\pi$

 \bullet Two methods to avoid biasing ρ due to jets

Sliding window exclusion
 Exclude cells in jets satisfying

 $D = E_{T,max}^{tower} / \langle E_T^{tower} \rangle > 5$

- For R = 0.4, add an iteration step to ensure jets with E_T >50 GeV are always excluded from ρ estimate
- Correct for underlying event v₂

ATLAS

Longitudinal flow decorrelations

Space-time evolution of the matter created is not boost-invariant in the

longitudinal direction: $v_n(\eta_1) \neq v_n(\eta_2) \rightarrow FB$ asymmetry

 $\Phi_n(\eta_1) \neq \Phi_n(\eta_2) \rightarrow \text{sensitivity to twists}$

Harmonic flow vectors measured with charged particles over $|\eta| < 2.5$:

$$\vec{\mathbf{v}}_n(\boldsymbol{\eta}) = \mathbf{v}_n(\boldsymbol{\eta}) e^{in\Phi_n(\boldsymbol{\eta})}$$

Decorrelations \rightarrow use $r_{n|n,k}$ between the *k*th-moment of the *n*th-order flow

vectors in two different η intervals:

$$r_{n|n;k}(\eta) = \frac{\left\langle \boldsymbol{q}_n^k(-\eta)\boldsymbol{q}_n^{*k}(\eta_{\text{ref}})\right\rangle}{\left\langle \boldsymbol{q}_n^k(\eta)\boldsymbol{q}_n^{*k}(\eta_{\text{ref}})\right\rangle}$$

Longitudinal flow decorrelation in Pb+Pb collisions

• $r_{n|n,k}$ shows a linear decrease with η_{ref} , except in the most central collisions.

• The decreasing trend of $r_{n|n,k}$ for $n \equiv 2-4$ indicates significant breakdown of the factorisation of two-particle flow harmonics.

• The decreasing trend is slightly stronger at 2.76 TeV (collision system less boosted).