Extending wide FoV gamma-ray observations with an array of compact Cherenkov telescope

Thomas Bretz

RNTHAACHEN UNIVERSITY

on behalf of several people from INAOE, RWTH, UNAM and others

Hybrid detection

Hybrid detection:

- + HAWC's Eye Status and Performance
- + On-going Improvements

The (over-simplified) concept

HAWC's Eye

FACTs:

- Fresnel lens, f \approx D \approx 0.5 m
- 61(+3) SiPM based pixel
- Al Winston cones
- $1.5^{\circ}/px \sim 12^{\circ}$ total FOV
- 72 ch. DRS4 DAQ, 2 GS/s

The compact IACT (shipment 2017)

RWTH

ATTENTION

C ELECTRON

A compact and light-weight refractive telescope for the observation of extensive air showers

RWTH

1

JINST 13 (2018) P07024

~ 10.000 €

First light 27.07.2017

RWTHAACHEN UNIVERSITY

Coincidences !

Amplitude

<u>27.07.17:</u>

- Perfect weather conditions, clear sky, milky way visible, no moon
- 10x "low" threshold runs (550 DAC) (~ 50 min)
- 20x "high" threshold runs (600 DAC) (~ 100 min)

Thomas Bretz (RWTH Aachen University), Lisbon, May 2019

High threshold!

Example events

Run 7011, TS 224739, Ev# 236, CXPE40= 492, RA= 308.6, Dec= 18.9

Coincident showers

Field of view

HAWC core pos. of coincident events

triggered PMTs > 40 within 40m around the shower core position

Energy threshold for protons

Gamma Energy Threshold

Reproduced distribution of measured energies with proton Monte Carlos

Expectation: x3

Applied simulation to gamma-MC \rightarrow Energy threshold 10 TeV

Proton energy from hybrid reconstr.

Arrival direction (MC)

RWTHAACHEN UNIVERSITY

most simple analysis

(c) HAWC's prediction and its uncertainty outlined in a not normed solid angular probability density function. 'Shower MC' labels the true origin of the primary particle.

(d) The hybrid prediction and its calculated solid angular probability density function projected into the impactpoint on ground. The blue lines show its estimated standard deviations.

Improvement (MC)

(a) HAWC prediction.

(b) Hybrid prediction.

- \rightarrow Significant improvement in one direction
- → Needs stereo measurements

Replacing Hamamatsu with SensL

Thomas Bretz (RWTH Aachen University), Lisbon, May 2019

Investigated Cones

RWTHAACHEN UNIVERSITY

Final Hex-to-Square	Former Circular Al	Circular PMMA	Hex-to-Square WP fp
Hex-to-Square WP Slope	Hex-to-Square 2P Slope	Hex-to-Hex	Square-to-Square
Circular-to-Square	Hex-to-Square Lin. Short	Hex-to-Square Lin. Long	Hex-to-Hex Al
Square-to-Square AI	Circular-to-Square Al	Hex-to-Square Lin. Al	

Light-collector efficiencies

Currently installed: Former Circular Al Winston surface

Circular PMMA Cut Winston surface Final Hex-to-Square PMMA

RNTHAAC

Cone type	Central cone position	Edge cone position
	$a_{\gamma} \pm \text{RMS}$	$a_{\delta} \pm \text{RMS}$
Former Circular Al	$0.1889 \pm 2.6\%$	$0.1375 \pm 2.5\%$
Circular PMMA	$0.3060 \pm 0.5\%$	$0.3039 \pm 2.1\%$ x 2
Final Hex-to-Square	$0.3323 \pm 1.5\%$	$0.3232 \pm 2.4\%$

Glueing light concentrators

RWTHAACHEN UNIVERSITY

Glueing light concentrators

The new camera frame

RWTHAACHEN UNIVERSITY

Off axis measurement

Off axis measurement

> 50% off-axis background light We are working on reducing that!

Status

- Two telescopes built end of 2018
- Currently at UNAM
- Hopefully measurements within the coming six weeks
- Expected improvement in energy threshold:
 - factor ~4
- MC production just started

Conclusion

Hybrid Detection should be considered for the new wide-FoV observatory

