Compact WCD with a matrix of SIPM

Ruben Conceição, Giovanni La Mura, Cédric Perennes, Mário Pimenta, <u>Bernardo Tomé</u>

Wide field-of-view gamma-ray observatory in the Southern hemisphere, Lisboa, May 20th -22nd, 2019

The low energy challenge

- Even at high altitudes (reasonable!) low energy photon showers are still detected at $> 5 X_0$ below X_{max}
- For E = 100 GeV vertical showers, ~ 100 e.m. particles reach the ground at ~ 5000 m a.s.l
- ~ 90% of the shower secondaries are photons

Mean LDF at 5200 m altitude

@ 100 GeV :

- $r = 100 \text{ m} -> <\rho > \sim 0.001 \text{ photons/m2}$
- $r = 10 \text{ m} -> <\rho > \sim 0.015 \text{ photons/m2}$
- Increasing the station area does not help to increase the individual station signal...

Need single-particle station sensitivity !

Secondary particle spectra @ 5200 m altitude

WCD sensitivity to single ~ 10 MeV - 15 MeV photons is a challenge !

Photon interactions in H₂O

- At > 10 MeV : L_{Compton} + L_{Pair} ~ 50 g/cm2 (~9/7 X₀)
- 1 m $H_2O \rightarrow P_{int} = 0.86$; 2 m $H_2O \rightarrow P_{int} = 0.98$
- 2 x water depth increases the interaction probability by 1.14 …

A compact WCD concept Addressing new (and old...) challenges

Station signal

• WCD should be white to lower energy threshold!

• Timming

Access direct Cherenkov light pulse

Gamma/hadron discrimination

- WCD signal patterns at ground as potential discriminator
- At higher energies muon identification is a powerful discriminant variable
 - Explore timming characteristics to enhance muon id

Station layout

- Water Cherenkov Detector
- 1.5 x 1.5 x 1 m3
- 3 x 3 matrix of SiPMs @ WCD bottom
- 3x3cm² SiPMs
- Inner walls covered with white diffusing Tyvek

Geant4 simulation toolkit

Geant4 provides a wide variety of physics components for use in simulation

Photon processes

- Υ conversion into e+e- pair
- Compton scattering
- Photoelectric effect
- Rayleigh scattering
- Gamma-nuclear interaction in hadronic sub-package

Electron and positron processes

- Ionisation
- Coulomb scattering
- Bremsstrahlung
- Positron annihilation
- Production of e+e- pairs
- Nuclear interaction in hadronic sub-package
- Suitable for HEP & many other Geant4 applications with electron and gamma beams

+ equivalent processes for μ ; + hadronic processes, ...

WCD simulation using Geant4

- Explore Geant4 functionalities to simulate optical photon production and propagation :
 - Cherenkov emission, refraction and reflection at boundaries, bulk absorption, Rayleigh scattering, etc.
- λ dependence of all the relevant optical processes and material properties also implemented :
 - transmission efficiencies, dielectric constants, surface properties, photodetection efficiency,...

WCD simulation using Geant4

- Explore Geant4 functionalities to simulate optical photon production and propagation :
 - Cherenkov emission, refraction and reflection at boundaries, bulk absorption, Rayleigh scattering, etc.
- λ dependence of all the relevant optical processes and material properties implemented :
 - transmission efficiencies, dielectric constants, surface properties, photodetection efficiency,...

- Described using the G4 UNIFIED optical model;
- Specular and diffusive properties;
- R ~ 95%, for λ > 450 nm
 - 80% of which is diffusively reflected;
 - + 20% is reflected around the specular reflection direction, with σ_{α} ~ 0.2°
- Tyvek properties "inspired" in Auger simulation parameters :-)

RPC based µ-hodoscope in a test WCD at Auger Observatory

Data/Simulation agreement at % level !

First simulation studies

- Standalone Geant4
 - Single particles uniformly injected at top surface
 - Photons with fixed energy and with shower energy spectra
- Shower simulations

Signal size and uniformity

Using gamma spectrum in r = [0m,10m]

The fast, direct light pulse, arrives within 2 ns !

SiPM signal vs angle

Photons with E = 15 MeV

SiPM signal asymmetry gives additional information; to be explored ?

γ/h separation through muon id

- At high energies muon counting is a powerful gamma/hadron discriminator;
- Muon id is usually based on its large Cherenkov signal in the WCD;
- Increasing Sµ/Sem :
 - Increase muon track length L; reduce station area A_{station}
 - Consider only stations at large distances to shower core : ρ_{em} and $\langle E_{em} \rangle$ decrease with r_{Core}

Muon id in a compact WCD

Exploring the timming and topological characteristics :

• Fast direct Cherenkov light pulse of a **single muon** is seen mainly in only a part of the readout matrix

• The spreaded signal of **several photons/electrons** entering at random positions in the WCD is seen across the whole readout matrix

First tests ...

- For r > 40~m : $S_{\mu} \sim 25~x~S_{\gamma}$
- Each "photon event" consists of 25 photons injected uniformly in the WCD;
- Total signal ~ signal from a single muon

First tests ...

Compute event by event differences of traces: muon - <gamma25>

Single muons @ position B ->

Differences of traces : muon - <gamma25>

Differences of traces : muon - <gamma25>

Towards Muon id with a compact WCD

- Preliminary, single-station, assessment quite promising
- Starting studies with shower events
 - Explore ANN techniques
 - Granada group starting to look into simulations
- Stations close to the shower core could also be used ? ...

RPC hodoscope in test WCD at Auger Observatory

WCDs

Study + monitor + calibrate WCD response

First simulation studies

- Standalone Geant4
 - Single particles uniformly injected at top surface
 - Photons @ fixed E and with shower energy spectra
- Shower simulations
 - Circular array with $R = 160 \text{ m} (80000 \text{ m}^2) @ 5200 \text{ m}$ altitude
 - Corsika showers @ LogE in [2.0,2.2]; $\theta = 10^{\circ}$

Station signal mean LDF @ 100 GeV

Stations with detected signal

Station signal

- All simulations based on an old SiPM PDE curve;
- Recent measurements by the Padova group on new SiPMs show better performance, namely towards small wavelenghts;
- Simulations to be updated with new PDE curve...

Summary

- First considerations on a **compact WCD with SiPM readout**
- Triggering at **100 GeV** difficult, but may be achievable...
- Timing, using fast direct light pulse, at the level of 2 ns
- Muon id exploring time trace and using ANN is promising
 –> Small core (about 100 stations) complemented with RPC hodoscopes
- Nothing yet optimised... WCD dimensions, light readout, ...

EM energy @ 5000 m

• For $E_{em} \sim 1 \text{ GeV} \rightarrow \sim 100 \text{ photons } @$ ground, each with a typical energy of 10 MeV - 15 MeV

• WCD sensitivity to single ~ 10 MeV photons is a challenge !

particles per station @ 100 GeV

~ 80% of the stations have only 1 photon