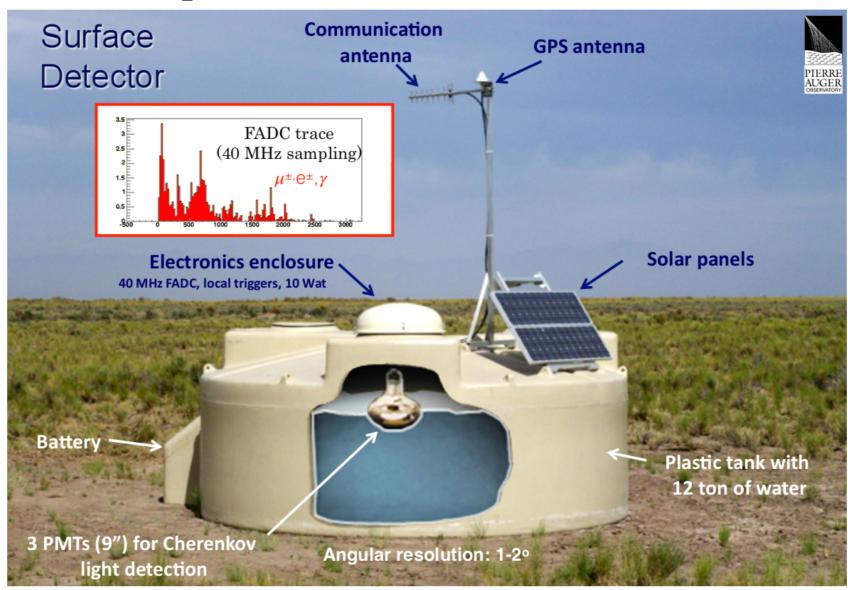
Photon classification in WCD using supervised and semi-supervised approaches

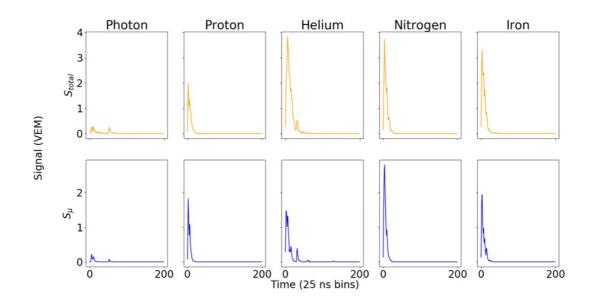
Alberto Guillén University of Granada

Data and problem description



Data and problem description

CORSIKA + QGSJET-II + Offline simulations from Pierre Auger Collaboration



Problems: Muon number prediction Muon signal reconstruction

...

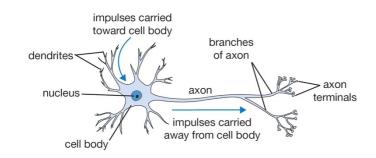
Binary classification: photon vs. Hadron photon vs proton

ANNs, CNNs and DL...

Simplified approximations of biological neural networks

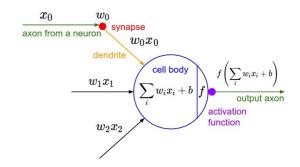
Natural

Synapsis

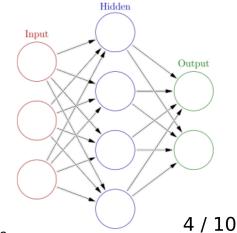


Neural Network

Artificial



$$g(x;\Theta)$$



 $\sum g_i(x;\Theta)W_i$

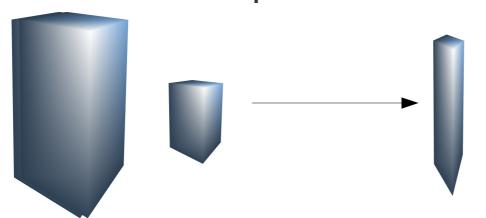
Images

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSbb2Van-e2T24h3Z44c-HfUr4PXu-LcCNs3Gg2OVdT3_aY1dR9ng http://cs231n.github.io/neural-networks-1/

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQlG8BgVOl8a7mrwnj9X0F8p1Q8Nj2umPnWy5-kEaskuXfEuWdn

Convolution (in DL)

- Given a 3D tensor (height, width, depth), a filter (receptive field) operation (<height, <width,=depth) is applied
 - Proyected 2D tensor (activation map) is obtained conserving presummed local relationships



The more filters, the more convolutions can be "combined" afterwards to stack more conv. layers

Problem approximation 1: only using the trace

- Input: 3 WCD traces per event (with signals S_{total} , S_{M} , S_{em})
 - Some approaches:
 - classify isolatedly each station (= One trace)
 - Use three traces as input
 - Using S_{total} and S_M (AugerPrime will provide both...)

5 types of particles → Imbalanced classification → 1st approach: undersampling hadrons

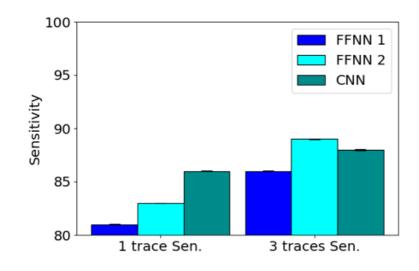
	Photon	Hadrons	Total
Using 1 trace/event	39195	40000	79195
Using 3 traces/event	3312	3600	6912

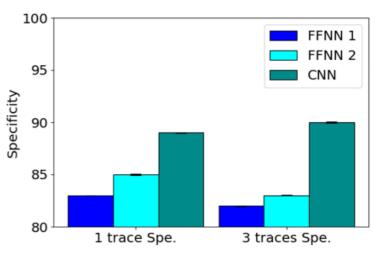
Results using ANNs

Three ANNs architectures evaluated using the total signal and muonic signal

One trace				
S_{total}	Test Acc.%			
FFNN1	82.12(0.65)	82.11(0.27)		
FFNN2	84.14(0.43)	84.18(0.17)		
CNN	87.23(0.22)	88.74(0.14)		
S_{μ}	Test Acc.%	Val. Acc.%		
FFNN1	78.15(0.074)	78.55(0.37)		
FFNN12	77.92(0.074)	78.61(0.37)		
CNN	79.05(0.12)	79.05(0.34)		

	Three traces				
	S_{total}	Test Acc.%	Val. Acc.%		
1	FFNN1	84.03(1.40)	86.20(0.68)		
	FFNN2	85.79(0.80)	88.28(0.58)%		
1	CNN	88.48(0.02)	90.95(0.58)		
	S_{μ}	Test Acc.%	Val. Acc.%		
1	FFNN1	87.08(0.41)	86.98(0.65)		
1	FFNN2	86.27(0.41)	87.86(0.95)		
	CNN	86.07(0.34)	88.02(0.60)		





First preliminary conclusions...

- Photon identification seems feasible just using the (simulated) trace
- Spatial and temporal information intra and intertrace is useful (better use three traces) for CNNs
- Using total signal is better than considering only muonic → S_{em} might be a good input...

Conclusions

- Given a set of observations, <u>unsupervised learning seems</u> <u>not possible</u> (with clustering)
 - Semi-supervised it does a good job gaining interpretability...
- For ultra-accurate results, state of the art models excel...
 - Useful? For sure! if not for Physics, for design stage → models can quantify changes in design decissions

as long as simulations are correct.

Thanks to

- LIP
- Pierre Auger Collaboration

...and all of you for your attention.