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deep artificial neural networks
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‣ Artificial Neural Networks on steroids: with more layers 
‣ E.g., a MLP with more than two hidden layers.
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neuroevolution

‣ Application of EC to optimise Artificial Neural Networks: 
‣ Topology; 
‣ Learning strategy; 
‣ Topology and learning strategy.
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neuroevolution

‣ Application of EC to optimise Artificial Neural Networks: 
‣ Topology; 
‣ Learning strategy; 
‣ Topology and learning strategy. 

‣ The population encodes ANNs; 
‣ The fitness measures the performance of each individual in 

the problem at hand.
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gamma/hadron showers ground impact patterns
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Gamma Proton
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data
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convolutional neural networks
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convolutional neural networks
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evolution of convolutional 
neural networks for  

gamma/hadron discrimination
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denser
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<features> ::=<convolution> |<convolution> (1)
|<pooling> |<pooling> (2)
|<dropout> |<batch-norm> (3)

<convolution> ::= layer:conv [num-filters,int,1,32,256] (4)
[filter-shape,int,1,2,5] [stride,int,1,1,3] (5)
<padding><activation><bias> (6)

<batch-norm> ::=layer:batch-norm (7)
<pooling> ::=<pool-type> [kernel-size,int,1,2,5] (8)

[stride,int,1,1,3] <padding> (9)
<pool-type> ::= layer:pool-avg | layer:pool-max (10)
<padding> ::= padding:same | padding:valid (11)

<classification> ::=<fully-connected> |<dropout> (12)
<fully-connected> ::= layer:fc <activation> (13)

[num-units,int,1,128,2048 <bias> (14)
<dropout> ::=layer:dropput [rate,float,1,0,0.7] (15)

<activation> ::= act:linear | act:relu | act:sigmoid (16)
<bias> ::= bias:True | bias:False (17)

<softmax> ::= layer:fc act:softmax num-units:2 bias:True (18)
<learning> ::=<bp><stop> [batch_size,int,1,50,300] (19)

|<rmsprop><stop> [batch_size,int,1,50,300] (20)
|<adam><stop> [batch_size,int,1,50,300] (21)

<bp> ::= learning:gradient-descent [lr,float,1,0.0001,0.1] (22)
[momentum,float,1,0.68,0.99] (23)
[decay,float,1,0.000001,0.001] <nesterov> (24)

<nesterov> ::= nesterov:True | nesterov:False (25)
<adam> ::= learning:adam [lr,float,1,0.0001,0.1] (26)

[beta1,float,1,0.5,1] [beta2,float,1,0.5,1] (27)
[decay,float,1,0.000001,0.001] (28)

<rmsprop> ::= learning:rmsprop [lr,float,1,0.0001,0.1] (29)
[rho,float,1,0.5,1] [decay,float,1,0.000001,0.001] (30)

<stop> ::= [early_stop,int,1,5,20] (31)

FIGURE 4. Grammar used by F-DENSER++ for the evolution of CNNs to

classify between gamma and proton.

TABLE 2. Experimental parameters.

Evolutionary Parameter Value
Number of runs 10

Number of generations 100
� 4

Add layer rate 25%
Duplicate layer rate 15%
Remove layer rate 25%
DSGE-level rate 15%
Train time rate 20%

Train Parameter Value
Default train time 10 minutes

Loss Categorical Cross-entropy

where TPR(x) and FPR(x) represent the TPR and FPR of the
model at the point x of the FPR threshold, respectively. Since
we are maximising, the models assigned with higher fitness
values are those with a higher respose of TPR for each FPR
point, with emphasis to points with low FPR threshold.

The choice of the fitness function is connected with the
fact that the observation of astrophysical gamma-ray sources
relies on the identification of gamma-rays which are im-
mersed in a huge cosmic ray (hadronic) background. As the
background is continuous and isotropic, while gamma-ray

FIGURE 5. ROC curves of the worse, median, and best fittest individuals. A

logarithmic scale is used.

are localized in space, if one acquires during enough time,
an excess of events coming from the gamma-ray sky region
should be visible. To state that there is an excess, the number
of gamma-ray events has to be higher than the fluctuations of
the background. As events are considered independent, the
fluctuations follow the Poisson distribution, i.e., the square
root of the number of events measured. By taking the number
of background events much higher than the number of signal
events, one can neglect the signal contribution in the square
root which finally leads to the chosen fitness equation.

D. EXPERIMENTAL RESULTS

The analysis of the experimental results focuses on the per-
formance of the evolved networks, measured on the evolu-
tionary test set. The fitness function described in Section V-C
is strictly related to the ROC curve, and thus in Figure 5
we depict the ROC curves (measure over the generalisation
set) of the fittest networks that achieve the worse, median,
and highest fitness values. The fittest networks are selected
according to their fitness value on the test set.

The curve of the individual with the median fitness value
is close to the curve of the best individual, indicating that
the results are consistent, i.e., a high performing network
is not discovered by chance, but is instead an outcome of
the evolutionary search of F-DENSER++. The minimum,
average, and maximum fitness values are 4.07, 5.27, and
6.26, respectively.

Despite the importance of the analysis of the overall re-
sults, the ultimate goal is to select a model that is capable
of addressing the problem we have at hand, in this case, a
CNN which is capable of classifying between gamma and
proton. We select the best performing network according to
the evolutionary test fitness. Recall that this choice is not
biased because we will be later comparing the results based
on a different, disjoint, set of instances.

The topology of the best performing network is shown in
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Partition #Gamma Instances #Proton Instances
Train 22541 20261

Validation 1691 1519
Test 3945 3546

Generalisation 13879 12474

TABLE 1. Description of the dataset partitions.

tend to be simple and therefore require less evaluation time;
as time proceeds, the networks become more complex and
may benefit from longer trains.

In the current paper, we conduct the experiments with
F-DENSER++ because it has been proved to be able to
generate highly performing fully-trained models, in less time
than the standard DENSER implementation.

V. EVOLUTION OF CONVOLUTIONAL NEURAL

NETWORKS

The gamma-ray detector, as described in Section II, is com-
posed by 3m ⇥ 1.5m individual stations that occupy a full
circle array with a radius of approximately 80m. Therefore,
each event is a matrix with the recorded signal by each of the
cells. The goal is to, based on the signal matrix, distinguish
between gamma radiations and protons. CNNs [29] are suited
for analysing spatially-correlated data, and thus appropriate
for this supervised classification task.

CNNs are a Deep Learning (DL) model, i.e., from the raw
data (i.e., the matrix of signal), the model designs the fea-
tures, and then performs classification based on the acquired
data representation. The typical structure of CNNs divides
the hidden-layers into two major blocks: (i) a set of layers
responsible for representation learning and feature extraction,
which is formed by Convolutional and Pooling layers; and (ii)
a set of layers for classification, where fully-connected layers
are used (see Figure 3). Convolutional layers are composed
by a set of learnable filters that are convolved with the input;
each filter connects locally (to what is known as the receptive
field) to the input and is activated by different patterns, thus
encoding a different feature. Pooling layers down-sample
the input by aggregating neurons and consequently reduce
the number of trainable parameters. Fully-connected layers
densely connect to all neurons of the input layer.

The design of CNNs requires the definition of: (i) the
topology, i.e., the number of layers, type, sequencing, and
parameterisation; and (ii) the learning strategy, i.e., the learn-
ing algorithm, and its parameterisation. Instead of hand-
designing a CNN that is able to solve our gamma-ray detec-
tion problem we use F-DENSER++ to automate the search.

The dataset description, the parameterisation of F-
DENSER++, and the fitness function are respectively de-
tailed in Sections V-A, V-B, and V-C. The experimental
results are presented in Section V-D, and are discussed in
Section V-E.

A. DATASET

The dataset is composed of 79856 instances (shower events)
of two disjoint classes: gamma or proton. Each instance is a
100 ⇥ 45 matrix, where each position represents the energy at
a specific 3m ⇥ 1.5m cell of the circular grid of radius 80m.
The positions of the matrix where there are no cells (because
the grid is circular and the matrix is rectangular) are set to 0.

We partition the dataset into 4 independent sets. The first 3
are used during evolution:

Train – used for training the individual with the evolved
learning strategy;

Validation – necessary for measuring the loss during the train,
to perform early stopping;

Test – applied to compute the fitness of the network
after the training. This fitness value defines the
quality of the individual and guides evolution.

The last partition is used after the end of the evolutionary
search and measures the generalisation ability of the models.
If this partition was not created it would be impossible to
perform an unbiased evaluation of the generated networks
because evolution is conducted towards the test partition, and
consequently it is expected that the networks perform well
on it; that does not mean that they perform well beyond the
data used during evolution. The number of instances of each
partition is detailed in Table 1.

B. EXPERIMENTAL SETUP

To apply F-DENSER++ to the evolution of CNNs, first of
all, we need to define the outer-level structure and the inner-
level grammar. We use the outer-level structure: [(features, 1,
30), (classification, 1, 10), (softmax, 1, 1), (learning, 1, 1)],
and the grammar of Figure 4. The search space encompasses
CNNs with between 3 and 41 layers, and all parameters
including the learning strategy are encoded in the grammar.

F-DENSER++ parameters are summarised in Table 2. The
table is divided into two independent sections: (i) evolution-
ary parameters – specify the evolutionary engine properties
(number of generations, mutation rates, etc.); and (ii) train
parameters – enumerate the learning parameters that are fixed
for all networks. The default training time is of 10 minutes
and can increase in multiples by mutation.

No data augmentation strategy is used, and the dataset is
pre-processed by feature-wise centring and standard devia-
tion normalization.

C. FITNESS FUNCTION

To evaluate the fitness of each individual, we evaluate the
model in the test partition, and compute the true positive rate
(TPR) and false positive rate (FPR) to build the Receiver Op-
erating Characteristic (ROC) curve; we consider the positive
class as the instances classified as a proton. The fitness of
each individual of the population (ind) is calculated as:

fitness(ind) = max

 
TPR(x)p
FPR(x)

!
,
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TPR - True Positive Rate = signal (gamma) 
FPR - False Positive Rate = background (proton)
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‣ Erec ~ 1 TeV 
‣ Improvement by a factor of 2
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road ahead 
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‣ Physics: 
‣ Search networks for different primary energies; 
‣ Study the impact of the detector configuration 

(shape of the cells, and size of the grid). 
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‣ Physics: 
‣ Search networks for different primary energies; 
‣ Study the impact of the detector configuration 

(shape of the cells, and size of the grid). 
‣ Evolution: 

‣ Multi-objective to incorporate the size and number 
of trainable parameters of the networks.
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of Artificial Neural Networks for Gamma-Ray Detection. 
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