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ARTIFICIAL NEURAL NETWORKS
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DEEP ARTIFICIAL NEURAL NETWORKS

» Artificial Neural Networks on steroids: with more layers
» E.g., a MLP with more than two hidden layers.
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EVOLUTIONARY COMPUTATION
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EVOLUTIONARY COMPUTATION
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NEUROEVOLUTION

» Application of EC to optimise Artificial Neural Networks:
» Topology;
» Learning strategy;
» Topology and learning strategy.



NEUROEVOLUTION

» Application of EC to optimise Artificial Neural Networks:
» Topology;
» Learning strategy;
» Topology and learning strategy.

» The population encodes ANNSs;



NEUROEVOLUTION

» Application of EC to optimise Artificial Neural Networks:
» Topology;
» Learning strategy;
» Topology and learning strategy.

» The population encodes ANNSs;

» The fitness measures the performance of each individual in
the problem at hand.
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GAMMA/HADRON SHOWERS GROUND IMPACT PATTERNS
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CONVOLUTIONAL NEURAL NETWORKS
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EVOLUTION OF CONVOLUTIONAL
NEURAL NETWORKS FOR
GAMMA/HADRON DISCRIMINATION
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GRAMMAR EXAMPLE

<features> ::= <convolution> | <convolution> (D)

| <pooling> | <pooling> ()

| <dropout> | <batch-norm> 3)

<convolution> ::= layer:conv [num-filters,int,1,32,256] 4
[filter-shape,int,1,2,5] [stride,int,1,1,3] &)

<padding> <activation> <bias> (6)

<batch-norm> ::=layer:batch-norm (7
<pooling> ::= <pool-type> [kernel-size,int,1,2,5] (8)
[stride,int,1,1,3] <padding> 9)

<pool-type> ::= layer:pool-avg | layer:pool-max (10)
<padding> ::= padding:same | padding:valid (11
<classification> ::= <fully-connected> | <dropout> (12)
< fully-connected> ::= layer:fc <activation> (13)
[num-units,int,1,128,2048 <bias> (14)

<dropout> ::=layer:dropput [rate,float,1,0,0.7] (15)
<activation> ::= act:linear | act:relu | act:sigmoid (16)
<bias> ::= bias:True | bias:False (17)
<softmax> ::= layer:fc act:softmax num-units:2 bias: True (18)
<learning> ::= <bp> <stop> [batch_size,int,1,50,300] (19)

| <rmsprop> <stop>> [batch_size,int,1,50,300]  (20)

| <adam> <stop> [batch_size,int,1,50,300] 21)

<bp> ::=learning:gradient-descent [Ir,float,1,0.0001,0.1] (22)
[momentum,float,1,0.68,0.99] (23)
[decay,float,1,0.000001,0.001] <nesterov> 24)

<nesterov> ::= nesterov:True | nesterov:False (25)
<adam> ::= learning:adam [Ir,float,1,0.0001,0.1] (26)
[betal,float,1,0.5,1] [beta2,float,1,0.5,1] 27
[decay,float,1,0.000001,0.001] (28)

<rmsprop> ::= learning:rmsprop [Ir,float,1,0.0001,0.1] (29)

[rho,float,1,0.5,1] [decay,float,1,0.000001,0.001] (30)
<stop> ::= [early_stop,int,1,5,20] (31



FITNESS

TPR(x)
VFPR(X)

fitness(ind) = max

TPR -True Positive Rate = signal (gamma)
FPR - False Positive Rate = background (proton)
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EVOLUTIONARY RESULTS ROC CURVES
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FITTEST NETWORK TOPOLOGY

(None, 100, 45, 1)

output: [ (None, 100, 45, 1)

'

(None, 100, 45, 1)

(None, 100, 45, 248)

'

(None, 100, 45, 248)

(None, 34, 15, 217)

'

(None, 34, 15, 217)

(None, 34, 15, 92)

(None, 34, 15, 92)

(None, 15, 6, 58)

(None, 15, 6, 58)

(None, 5220)

(None, 5220)

output: | (None, 1543)

(None, 1543)

input:
InputLayer
input:
Conv2D
output:
input:
Conv2D
output:
input:
Conv2D
output:
input:
Conv2D
output:
input:
Flatten P
output:
input:
Dense P
input:
Dense P

output: (None, 2)
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RESULTS
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RESULTS
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»  Improvement by a factor of 2
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ROAD AHEAD

»  Physics:
» Search networks for different primary energies;

» Study the impact of the detector configuration
(shape of the cells, and size of the grid).
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ROAD AHEAD

»  Physics:
» Search networks for different primary energies;

» Study the impact of the detector configuration
(shape of the cells, and size of the grid).

> Evolution:

» Multi-objective to incorporate the size and number
of trainable parameters of the networks.
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PUBLICATIONS

» Assuncao, F, Correla, J., Conceicao, R., Pimenta, M., Tome,
B., Lourenco, N. and Machado, P, 2019. Automatic Design
of Artificial Neural Networks for Gamma-Ray Detection.
arXiv preprint arXiv:1905.03532.

(submitted to IEEE Access)
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