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1. Motivation

* Water tank detectors on extreme environment:

Long consecutive periods with negative temperatures according to
APEX data

Strong winds according to APEX data

High altitude means higher solar irradiance but also high radiative
losses to the sky
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1. Motivation

* Partial or even full freezing is a possibility:
May be a problem to reconstruct signals

May lead to premature ageing of the detector

* Mitigation strategies are possible but it is important to
know what is the “starting point” and their effect

https://live.staticflickr.com/8343/8198853437- 2f00e157¢1-b.jpg




2. System: a first case study

* Several possible detector configurations
(components/dimensions)

* Several positions within the system (in line/isolated)



2. System: a first case study




2. System: a first case study

* Several possible detector configurations
(components/dimensions)

« Several positions within the system (in line/isolated)

 Each case has to be analyzed




3. Physical Model: Heat transfer mechanisms

 With the Solar irradiance
surroundings

Natural / Forced

o convection
Radiative losses to

the atmosphere

Solar irradiance
(Liu-Jordan
model)

Natural / Forced

. Conduction through
convection

the ground



3. Physical Model: Heat transfer processes

e Jnside
Conduction
Convection based on correlations

Convection solved with velocity field calculation
(buoyancy driven flow)
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3. Physical Model: Heat transfer processes

* Models for freezing and defrosting:

. Literature on freezing or defrosting exist and may be used

Simulations of the water freezing process - numerical
benchmarks

January 2003

Tomasz Michatek - @ Tomasz Kowalewski

A sharp-interface model coupling VOSET and IBM for
simulations on melting and solidification

September 2018 - Computers & Fluids 178
DOI: 10.1016/j.compfluid.2018.08.027

® Kong Ling - @ Wen-Quan Tao



3. Physical Model: Heat transfer processes

* Models for freezing and defrosting:

Literature on daily cycle of freezing/defrosting couldn’t
be found and this process is a challenge
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3. Physical Model: Discretization

1D, 2D and 3D analysis, as needed

* Try to avoid “heavy calculations”: simulations of 1 year
with a time step of 1 min may take several days
without powerful calculation tools
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3. Physical Model: Discretization

 Version with RPC on top:

Lead Plate
e . 1D

0.0

: e RPC
. ' - 72 nodes
T [Fo-2 Air

1 node per convective zone

% [ (including water tank)

T-0.4

|

Los . (Adding/removing layers is

Loe easy to implement)
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3. Physical Model: Discretization
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3. Physical Model: Discretization

Case (1) Case (2)
T(x, 0) = T, T(x, 0) =T,
70, ) =T, —k aTlox| _, = q!
qg l
F—=x
T(x, 1)
TS
t t
\ Incropera, Frank P, and David P. DeWitt.
Ti Ti Fundamentals of Heat and Mass Transfer. New

York: J. Wiley, 2002
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3. Physical Model: Discretization
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3. Physical Model: Discretization

e Solving the convective velocity field in the water tank
may be needed:

2D or 3D discretization

Will it better describe the thermal behavior of the system?
(more time consuming)

It is necessary to simulate in detail the freezing and the
defrosting processes



3. Physical Model: Discretization

* Velocity field,
2D heat flux,
100 nodes
1 day in 48s
from Oh to 24h




Animation
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3. Physical Model: Weather data

 The nearest weather data source, the APEX site:

Incomplete: temperature and wind velocity

« Typical Meteorological Years (TMY):

Can be obtained for long term averages

Obtained from satellite data and ground weather meteorological
stations but interpolated — large uncertainties



3. Physical Model: Weather data
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3. Physical Model: Weather data

 And an important question arises: are we interested in
the TMY or in a representative extreme year?

. Scarce literature, “just ideas” - a challenge

Rethinking the TMY: Is the 'Typical' Meteorological Year Best
for Building Performance Simulation?

December 2015
Conference: Building Simulation 2015 - At: Hyderabad, India

Project: A new generation of weather data for building performance simulation — TMY, XMY and
beyond

(@ Drury B. Crawley - @ Linda Lawrie

i Energy Procedia —

A e
& ‘x.“’g - Volume 69, May 2015, Pages 1958-1969

Typical Meteorological Year Data: SolarGIS
Approach %

T. Cebecauer & &, M. Suri
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4. Some results
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4. Some results: module without side insul

ation
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4 Some results: module with side insulation (6 cm)

1 ““l (o 0 4 H

“’ ” !M
wiwm N Fi‘ Uu 11“ ‘l l

% H\ |‘ 7‘
- 1 lu MW ﬂ mﬂux\ I Hl
""‘n’ i »r!yw I | l' ” v ,,WH(,‘ wl\ u

[

RRRRRRRR

———

|
\
\ =
——————

000000

000000

_101(“'“ ------- I f H‘ ,”I\l Vl lW]I“I

00000




5. Next developments

e Model:

3D conduction and convection for isolated module analysis

2D and 3D phase change model for freezing and defrosting of the
water

e Weather:

Definition of an extreme year model



5. Next developments

e First analysis:
Impact of the dimensions of the tanks

Mitigation strategies
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