

Design and Performance study of Sealing MRPC (SMRPC) with extremely low gas flow

D. Han, Tsinghua University, China

handong@mail.tsinghua.edu.cn

►1 Background

2 Detector design and assembly

➤3 Gas flow simulation

≻4 Test result

➢ 5 Summary and outlook

Motivation

≻ In 2000, European Union **"F-gas regulation"**:

- -Limiting the total amount of F-gases that can be sold in the EU
- -Banning the use of F-gases in many new types of equipment.
- Preventing emissions of F-gases from existing equipment.

Cons, higher price MRPCs and RPCs with HFO are still in study

So try to seal MRPC as tight as possible to reduce the gasflow, as well as gas cost, through the technological design.

Schemes

➢ SRPC or SMRPC

➤SRPC, simple structure, cost-effective, less volume and weight

SMRPC, high efficiensy, good space resolution and time resolution

The sealing bar designed

Try to use the material, such as the glass, fishing line, glue and so on,

with low air releasing property. Sealing bar---- Class ABS resin

High voltage resistance test

The final design

The assembly process

10

10.

10.

10.0

T + CAEN SY15

The first version and it's performance

Fluent is used to simulate the internal gas flow including the flow volume, intake velocity, distribution of pollutant concentration, etc.

Control function

$$\frac{\partial(\rho\phi)}{\partial t} + \nabla \cdot (\rho \vec{v} \phi) = \nabla \cdot (\Gamma_{\phi} \nabla \phi) + S_{\phi}$$
Unsteady Advection Diffusion Source

Finite Element Method (FEM) ; SIMPLE algorithm (Semi-Implicit Method for Pressure-Linked Equations)

Detector Modeling and Gridding

Simulation results (Velocity V at 30ml/min)

Simulation results (Velocity V at 3ml/min)

4.00e-06

3.75e-06

3.50e-06 3.25e-06

3.00e-06

2.75e-06

2.50e-06

2.25e-06

2.00e-06 1.75e-06

1.50e-06 1.25e-06

1.00e-06 7.50e-07

5.00e-07

2.50e-07

0.00e+00

> The one inlet and outlet at different place

The distribution of pollutant concentration

1hole 3ml/min 0.5HZ/cm²

The new version

The readout board

strip=1.44mm, strip gap=1.1 mm

Air tightness test

Experimental set-up of Cosmic ray test system

The amplifier is made by Tsinghua, whose gain and bandwidth are 30 k Ω and 24 MHz

The performance of new SMRPC

Stability test

Position resolution test

Amplifier

Large area SMRPC with 2 gas gaps

Assembly Overall View

Detector asembly

hannel Name	VØSet	IØSet	V	fon	I	Mon		Pω	Status		
	2400.00	2000.0	uA	0.00	V	0.2	uA	Off			
	2400.00	2000.0	uA	0.00	Ų .	0.0	uA	Off			
	2400.00	2000.0	uA	0.00	V	0.0	uA	Off			
EG_4kV_07	2400.00	200.0	uA	0.00	Ų	0.0	uĤ	Off			0
EG_4kV_08	2400.00	200.0	uA	0.00	V	0.0	uĤ	Off			0
EG_4kV_09	2400.00	200.0	uA	0.00	V	0.0	uĤ	Off			0
EG_4kV_10	2400.00 V	200.0	uA	0.00	V	0.0	uA	Off			0
EG	2400.00 V	200.0	uA	0.00	V	0.0	uA	Off			0
RPC0+	0 V	0.20	uA	2	V	0.00	uA	Off			0
RPC1+	4000 V	10.00	นค	3996	V	0.04	uA	On			0
RPCZ+	<u>a</u> v	1.00	แค	2	V	0.00	uA	Off			0
RPU3+	0 0	1.00	uA	1	Ų	0.00	uA	Off			0
US_15KV_04	00	10.00	uA	2	V	0.00	uA	Off			0
02_12KV_02	9 V	10.00	uA	8	V	0.00	uA	Off			0
BDC4		0.20	uA	1	Ų	0.00	uA	Off			12
NFCI-	4000 0	10.00	uA	3999	V	0.03	uA	On			12
RPC3-	90	1.00	uA	0	V	0.00	uA	Off			12
RPC4-	U V	1.00	uA	8	V	0.00	uA	Off			12
RPC5-	80	10.00	uH	1	Ų.	0.00	uA	Dff			12
hannels Disn		10.00	uH	0	Ų į	0.00	uA	Dff			12
in Disp.	ray call 5	creen	_		_	LocE	n V	0 10	N 🔶	CAE	I S

Design a Sealing MRPC which can operate at low gas rate about 0.5

ml/min with efficiency above 90% and clustersize around 4.4.

Simulate the gas flow and the distribution of pollutant concentration inside SMRPC.

≻To do

- Test the performance of large area SMRPC with pure Freon.
- Try to find the Eco-friendly gas suitable for SMRPC operation.

Thank you for your attention

➤ SRPC

- Gas gap: 1.2mm
- Readout strip: 2.54 (1.44+1.1)mm
- Working gas: 90% Freon+5% Isobutane+5%SF6
- ➢ Working voltage: ±5.7kV

SMRPC

- ➢ Gas gap: 0.25mm
- > Number of gas gap: 5
- Readout strip: 2.54 (1.44+1.1)mm
- Working gas: 90% Freon+5% Isobutane+5%SF6
- ➢ Working voltage: ±7kV

