Characterization of NDBD detection effectiveness of LZ using CNN classification

Andrey Solovov

1st meeting of BigDataHEP - LIP Coimbra, Jan. 11 2019

contents

1. LXe NDBD 1. mechanism 2. characteristics 2. NDBD in LZ 1. competitiveness 2. challenges 3. Project Goals 4. Detection Method **5. CNN Training Data** 6. Current Status

arXiv:1106.3630

Xe NDBD - mechanism

[1] Phys. Rev. C 89, 015502 (2014), [2] Phys. Lett. B, 546 (2002) 23

Xe NDBD - characteristics

- High and precise energy
- Topological signature (2 "blobs") affects S2

NDBD in LZ - competitiveness

- LZ uses natural LXe -> 8.857% ¹³⁶Xe
- apprx. DM fiducial LXe mass = 5.6t
- about 0.5t of ¹³⁶Xe, more than for any other experiment in the field
- 25 keV energy resolution is competitive
- Maximum NDBD activity in LZ of 5.0 x 10³ y⁻¹

Despite being optimized for low energy recoils from WIMPs, LZ still competitive at the energy ROI for NDBD

NDBD in LZ - challenges

- LXe instead of gaseous Xe
 - Blobs close together (~6 mm)
- Diffusion
 - Loss of definition with depth
- False positives
 - Single electron 2.5 MeV events
- PMT array
 - PMT spacing limits xy reconstruction and resolution, as well as making the detectability depend on event orientation

CNN can be advantageous because it examines input from an event holistically

- Improve effectiveness of NDBD detection using discrimination methods
- Improve fiducial mass (depth)
- Reconstruction if possible

Method of Detection

Two steps: 1) S2/S1 and energy windows 2) CNN binary classification

back-to-back NDBD electrons single 2.5 MeV electron recoil (background)

(recoil electrons after 0.3 of TPC depth)

CNN Training Data

- Recognize features by training with simulated samples representing ideal conditions first, then add complexity until realistic, finally use experimental data
 event orientation
 - electric field
 - PMT configuration

Current Status

- Simulated waveforms are being generated under ideal conditions (uniform electric field in drift region, back to back z-oriented event).
- Currently implementing simulation into ANTS2, reducing simulation time.

thank you.

NDBD in LZ - competitiveness

• LZ uses natural LXe -> 8.857% ¹³⁶Xe

• apprx. DM fiducial LXe mass = 5.6t

Experiment	$M_{\beta\beta}(t)$	NDBD efficiency	Energy resoln. (keV)	Bgr/ROI (counts/y)
EXO-200	0.141	0.34	100	11 - 71
GERDA-1	0.0152	0.95	4.2	0.77 - 4.5
GERDA-2	0.0304	0.84	2	0.07 - 0.43
CUORE-0	0.0109	0.83	5	9.8 - 21.3
CUORE	0.206	0.83	5	37.1 - 134
KamLAND-ZEN	0.357	0.61	250	19.6 - 161
MAJORANA	0.0172	0.85	2	0.04 - 0.41
SNO+	0.044	0.50	220	87 - 680
NEXT	0.0892	0.33	18	0.32 - 1.6
SuperNEMO	0.007	0.28	130	0.55 - 5.5
LZ	0.5	???	25	???

Maximum NDBD activity in LZ of 5.0 x 10^3 y⁻¹