AMBER: Unravelling QCD mysteries

Catarina Quintans, LIP-Lisbon21/02/2019

A new QCD facility at the M2 beam line of the CERN SPS

Letter of Intent at arXiv:1808.00848 [hep-ex]

Approval of future experiments

CERN created in 2016 the Physics Beyond Colliders - PBC study group, with a mandate to prepare the next European HEP strategy update (2019-20) on projects for future CERN non-collider experiments.

Coordinators: Joerg Jaeckel, Mike Lamont and Claude Vallée

Excerpt from the PBC mandate: "Explore the opportunities offered by the CERN accelerator complex to address some of today's outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world." Time scale: next 2 decades pbc.web.cern.ch

Last PBC annual workshop took place on 16-17 January: PBC workshop 2019

PBC working groups

- Physics Beyond Standard Model: SHIP/NA64++/NA62++/KLEVER/IAXO/LSW/EDM
- QCD Physics:

 $COMPASS++/\mu-e/LHC-FT/DIRAC++/NA60++/NA61++$

Where at CERN?

In the COMPASS/COMPASS-II experimental hall, since:

- Availability of both hadron and muon (unique!) beams (M2 beam line)
- Both beam charges available, and in wide range of energies (20-280 GeV)
- Re-use of large aperture dipole magnets from COMPASS
- Re-use of some of the most recent COMPASS detectors

The origins

A proto-Collaboration – ongoing

COMPASS

- CERN
- Saclay, France
- Torino, Italy
- Trieste, Italy
- Lisbon, Portugal
- Aveiro, Portugal
- Bonn, Germany
- Munich, Germany
- Mainz, Germany
- Freiburg, Germany
- Bochum, Germany

- Prague, Czech Rep
- Kolkata, India
- Dubna, Russia
- Protvino, Russia
- Moscow, Russia
- Tel-Aviv, Israel
- Warsaw, Poland
- Yamagata, Japan
- Illinois, USA
- Taipei, Taiwan
- \bullet Tomsk, Russia

+ **AMBER**

- Michigan, USA
- Chicago, USA
- Los Alamos, USA
- Tsinghua-Beijing, China
- Lanzhou, China
- Astana, Kazakhstan
- Bologna, Italy
- Trento, Italy
- Gatchina, Russia
- ...

AMBER physics programme

• Hadron physics with muon beam

- Proton radius from muon-proton elastic scattering
- Hard exclusive reaction with transversely polarized target
- Hadron physics with conventional hadron beams
 - Pion structure from Drell-Yan and charmonium production
 - Spectroscopy with low energy antiprotons
 - \bar{p} production cross-sections for DM searches
- Hadron physics with RF-separated beams
 - Spectroscopy of kaons
 - Kaon structure from Drell-Yan and direct photon production
 - Kaon polarizability from Primakoff reaction
 - Pion and kaon-induced vector-meson production

The proton radius puzzle: 2010

The proton radius puzzle (still)

The proton charge radius is accessed experimentally via two different methods: **lepton scattering** or **atomic physics** measurements.

But the obtained results differ by 5.6 σ !

- Elastic electron scattering and "Lamb shift" measurements (H spectroscopy) agree that the proton has a "large" radius
- Muonic hydrogen line splitting (spectroscopy on μ onic-H) sees the proton much "smaller"

 $R_E = 0.879 \pm 0.008 \text{ fm (MAMI)}$ $R_E = 0.841 \pm 0.001 \text{ fm (CREMA)}$

Proton form factors

Proton form factors in the dipole approximation:

$$G_E(Q^2) = G_M(Q^2)/\mu_p = \frac{1}{(1+Q^2/a^2)^2}$$

with constant $a^2\approx 0.71~{\rm GeV^2}/c^2$ and the proton anomalous magnetic moment $\mu_p\approx 2.79$.

The electric charge radius of the proton is:

$$\langle r_E^2 \rangle = -6\hbar^2 \left. \frac{dG_E(Q^2)}{dQ^2} \right|_{Q^2 \to 0} \stackrel{dipole}{=} \frac{12\hbar^2}{a^2} \approx (0.81 \text{fm})^2 \equiv \langle r_D^2 \rangle$$

LIP Seminar 21/02/2019

Muon-Proton elastic scattering

 $\mu p \rightarrow \mu' p$

$$\frac{d\sigma}{dQ^2} = \frac{\pi\alpha^2}{Q^4 m_p^2 \vec{p}_{\mu}^2} \cdot \left[\left(G_E^2 + \tau G_M^2 \right) \frac{4E_{\mu}^2 m_p^2 - Q^2 (s - m_{\mu}^2)}{1 + \tau} - G_M^2 \frac{2m_{\mu}^2 Q^2 - Q^4}{2} \right]$$

with $Q^2 = -(p_\mu - p_{\mu'})^2$, $\tau = Q^2/(4m_p^2)$ and $s = (p_\mu + p_p)^2$.

At high energy of the beam (160 GeV), the last term can be neglected. The sum $(G_E^2 + \tau G_M^2)$ can be accessed from the cross-section measurement, in the range $0.001 < Q^2 < 0.02 \ (\text{GeV}/c)^2$.

The measurement

- Advantageous wrt e-p scattering experiments like MAMI, since radiative corrections with muon \ll with electron
- Radiative corrections \ll than at low energy μp scattering, like proposed MUSE experiment (Coulomb distortion)

Proton radius measurement setup

Elastic scattering:

- identify the recoil proton $(E_{p'}: 100 \text{ keV} 100 \text{ MeV})$
- measure the scattering angle of the muon ($\theta_{\mu} \sim 100 \ \mu rad$)
- long target, for high luminosity (drift time $\sim 100 \ \mu s$)
- trigger on the recoil proton signal and on the small kink of scattered muon

...followed by a COMPASS-like spectrometer

Goal: uncertainty on $\sqrt{\langle r_E^2 \rangle} \approx 0.01$ fm

C. Quintans, "AMBER"

Dark matter searches: where can we help?

DM searches in astroparticle physics

Dark Matter:must existneutral

 \hookrightarrow WIMPs are a favorite!

Searches for dark matter via the products of its annihilation or decay

- \bar{p} primary production: $\chi\chi \to q\bar{q}, W^+W^-, \dots \to \bar{p}, \bar{D}, e^+, \gamma, \nu$
- \bar{p} secondary production: scattering of primary cosmic rays (p,He) in interstellar medium.

2008: exciting observation of \bar{p} excess by the **PAMELA** satellite, later confirmed with high precision by **AMS-02**.

There must be an extra source of \bar{p} in the Milky Way! WIMPs??

Antiprotons production cross-section

Most of the uncertainty in the \bar{p} spectrum comes from: propagation model and production cross-section.

Motivation for a precise measurement of \bar{p} production cross-section for incident energies in the range ~ 30 to ~ 250 GeV.

The measurement

Measure double differential cross-sections, in momentum and angle

- Proton beam in the range 30 GeV/c on liquid H₂ and ⁴He targets.
- Low beam intensity: 10^5 p/second
- Beam particle identification from CEDARs
- $e^{\pm}, \mu^{\pm}, \pi^{\pm}, K^{\pm}$, p and \bar{p} identified in the RICH
 - RICH signal for \bar{p} in 18
 - RICH as veto for \bar{p} in $10 (not <math>\pi$ and not K)

Goals on \bar{p} production x-section

Complementary to the measurements by LHCb in the TeV range.

Statistical precision $\sim 1\%$, with point-to-point systematic uncertainty <5% (present cross-sections uncertainty in this energy range is 20-30%)

Hadron mass hierarchy

Artwork by Sandbox Studio, Chicago with Corinne Mucha

The proton mass from lattice QCD

NEWS PARTICLE PHYSICS

Physicists finally calculated where the proton's mass comes from

Only 9 percent of the subatomic particle's bulk comes from the mass of its quarks BY EMILY CONOVER 6:00AM, NOVEMBER 26, 2018

Magazine issue: Vol. 194, No. 12, December 22, 2018, p. 8

in Science News

Hadron mass hierarchy

Over the last decades, the proton structure was thoroughly explored.

Other hadrons are still unexplored:

Pions and kaons are apparently simple, yet mysterious objects.

In their different structure (and internal dynamics) hides the answer to the "mystery" of the hadron mass hierarchy.

What do we really know about the pion?

- the lightest pseudo-scalar meson (S=0, $m_{\pi} = 140 \text{ MeV}$)
- described by 2 TMD PDFS of quarks: $f_{1,\pi}$ and $h_{1,\pi}^{\perp}$ (plus 2 for gluons)
- 95% of the pion mass comes from dynamics (gluons+sea)
- The valence is responsible for 50-60% of the pion momentum
- Pion structure information from only few DY experiments from the 80's

Pion-induced Drell-Yan process

$$\frac{d\sigma_{AB\to l\bar{l}X}}{dQ^2dy} = \sum_{ab} \int_0^1 dx_a \int_0^1 dx_b \Phi_a^A(x_a,\mu) \Phi_b^B(x_b,\mu) \frac{d\hat{\sigma}_{ab\to l\bar{l}}(x_a,x_b,Q,\mu)}{dQ^2dy}$$

COMPASS 2015 and 2018:

measured transverse spin asymmetries from pion-induced DY

- Hadron A: π^- beam
- Hadron B: p^{\uparrow} in polarized NH₃ target

 \hookrightarrow access convolutions of TMD PDFs of the u-quark (u-quark dominance)

How are PDFs determined?

PDFs are universal – all available measurements are used together, in global fits to world data: DIS, pp, πp , e^+e^- , ...

proton PDFs: Fractions of proton momentum carried by the constituent partons

$$f_u = \int_0^1 dx [xu(x) + x\bar{u}(x)]; f_d = \int_0^1 dx [xd(x) + x\bar{d}(x)]$$

Experimentally: $f_u^p \approx 0.36$ and $f_d^p \approx 0.18$

 \hookrightarrow *u*-quarks in the proton carry twice as much momentum than *d*-quarks. \hookrightarrow In total quarks carry only $\approx 50\%$ of the proton momentum. The rest is carried by gluons!

j

Proton polarized PDFs

Phase-space of measurements (mostly unpolarized)

For the polarized PDFs there is much less data available, specially in some regions of phase-space. Mostly fixed-target, recently also RHIC-Spin.

Big projects for the future: EIC, EIC-China and maybe Spin@LHC

LIP Seminar 21/02/2019

C. Quintans, "AMBER"

And what about the pion?

Much less studied. Experimentally, it is much more difficult:

- no such thing as "pion target"
- not so many pion beams of high energy in the world
- Few pion-induced Drell-Yan experiments, all performed in the '80s access to pion valence
- scarce data on direct photon production in $\pi^{\pm} + p$, also from the '80s access to gluon PDF

Pion induced Drell-Yan

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	$\frac{\rm DY\ mass}{\rm (GeV/c^2)}$	DY events
E615	20cm W	252	$\pi^+_{\pi^-}$	17.6×10^{7} 18.6×10^{7}	4.05 - 8.55	$\begin{array}{c} 5000\\ 30000\end{array}$
NA3	30cm H_2	200	$\pi^+_{\pi^-}$	2.0×10^7 3.0×10^7	4.1 - 8.5	$40\\121$
	6cm Pt	200	$\pi^+_{\pi^-}$	2.0×10^7 3.0×10^7	4.2 - 8.5	$1767 \\ 4961$
NA10	120cm D_2	$\frac{286}{140}$	π^{-}	65×10^7	4.2 - 8.5 4.35 - 8.5	$\frac{7800}{3200}$
	12cm W	286 194 140	π^{-}	65×10^7	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	110cm NH_3	190	π-	$7.0 imes 10^7$	4.3 - 8.5	35000 > 35000

- After 30 years, finally new data on pion-induced DY
- W and Pt: non-negligible nuclear effects have to be considered
- NA3 did not publish cross-sections
- COMPASS Drell-Yan cross-sections analysis ongoing

A roadmap for progress in this field

Strong motivation for new Drell-Yan measurements, with ultimate goals:

- Contribute to the hadron mass hierarchy puzzle
- Contribute to the hadron spin puzzles

Measurements should include and be accompanied by:

- Meson-induced Drell-Yan with both beam charges: sea-valence separation
- (Un)polarized Drell-Yan: hadron TMDs characterisation
- Meson-induced prompt photon production: glue component

Pion structure: valence + sea + glue

Valence:

$$v^{\pi}(x_1) = \bar{u}_v^{\pi^-}(x_1) = d_v^{\pi^-}(x_1) = u_v^{\pi^+}(x_1) = \bar{d}_v^{\pi^+}(x_1)$$

Sea (SU(3) symmetry):

$$S^{\pi}(x) = \bar{u}_{s}^{\pi}(x) = u_{s}^{\pi}(x) = \bar{d}_{s}^{\pi}(x) = d_{s}^{\pi}(x) = \bar{s}_{s}^{\pi}(x) = s_{s}^{\pi}(x)$$

Assuming charge and isospin conjugation symmetry for valence and sea quarks:

 $\Sigma_v^{\pi p} = \sigma^{\pi^- p} - \sigma^{\pi^+ p} \propto \frac{1}{3} u_v^{\pi} (u_v^p + d_v^p) \rightarrow \text{Only valence-valence terms}$

 $\Sigma_s^{\pi p} = 4\sigma^{\pi^+ p} - \sigma^{\pi^- p} \longrightarrow \text{No valence-valence terms}$

Pion Structure Function: $F_{\pi}(x_1)$

Simultaneous fit of NA3 π^+ , $\pi^$ and p at 200 GeV Drell-Yan data, using CDHS nucleon PDF set.

NA3 Coll.; Z.Phys.C 18 (1983) 281-287

 $F_{\pi}^{v}(x) 10^{-1}$ 10^{-2} 10^{-2}

 $v^{\pi}(x_1)$

×π

Discrepancy by 20% between E615 and NA3/NA10, even if all 3 use the value extracted by NA3, $\langle g_{\pi} \rangle = 0.47$. E615 Coll.; Phys.Rev. D **39** (1989) 92-122

Global fits

GRV: M. Gluck et al, Z.Phys.C ${\bf 53}$ (1992) 651-655

SMRS: P.J. Sutton et al, Phys.Rev.D 45 (1992) 2349–2359

- SMRS did not use π⁺ NA3 data. Instead, they assume 3 levels of sea: 10%, 15% or 20%.
- GRV neither. They constrain the pion gluon distribution from pion-induced direct photon production (NA24, WA70)
- NA3 did not publish cross-sections. They extract pion valence and sea based solely on their (scarce) data.
- Large discrepancies. No error treatment.

 \hookrightarrow COMPASS data will provide new input on the pion valence.

Recently: JAM pion structure extraction

JAM group revisited the old DY data, and added the leading neutron electroproduction from HERA:

at forward angles LN is expected to be dominated by pion exchange (...but indirect)

JAM, arXiv:1804.01965

Pion gluon distribution: g^{π}

The gluon distribution in the pion can be accessed from:

direct photons

- From gluon Compton scattering: $gq(\bar{q}) \rightarrow \gamma q(\bar{q})$
- From quark-antiquark annihilation: $q\bar{q} \rightarrow \gamma g$

First mechanism dominates.

Important background of minimum bias photons from π^{o} and η decays.

 \hookrightarrow Past measurements from WA70 and NA24.

\mathbf{J}/ψ

Mechanism of charmonia production not well understood, models differ:

- NRQCD (color octet+singlet): gg fusion dominance.
- Color Evaporation Model: $q\bar{q}$ annihilation dominance.

charmonia and their polarization may shed light into production mechanisms, eventually allow separation and access the gluon distribution.

A new Drell-Yan experiment

- Both beam charges are needed
- A light isoscalar target is preferable, to avoid nuclear effects.
- DY has low cross-section (6 orders of magnitude below the hadronic cross-section) → high luminosity needed
- Lots of hadronic products flying in the forward direction \rightarrow need a hadron absorber, to keep the spectrometer at reasonable occupancies

 \hookrightarrow preferably an **active absorber**

- As large acceptance as possible keep first part of spectrometer compact
- Good beam particle identification is mandatory

Target: possible (old-fashioned) design

New DY experiment: pion sea to valence ratio

- Collect at least a factor 10 more statistics than presently available
- Minimize nuclear effects on target side
 - Projection for 2 years of Drell-Yan data taking
 - $-\pi^+$ to π^- 10:1 time sharing
 - 190 GeV beams on Carbon target $(1.9\lambda_{int}^{\pi})$

Contribution to nuclear PDFs

Figure provided by P. Paakkinen, EPPS16 (P. Paakkinen et al, arXiv:1612.05741v1)

EPPS16: nuclear PDF effects from global fits, including pion-induced DY, and new data on neutrino DIS, and LHC p+Pb dijet, W and Z production.

- No tension in the fit when pion-induced DY data is added.
- But: the statistical weight of these data is not enough to add significant additional constraints to the nuclear PDFs.
- The new experiment may have a large impact

Competition/Complementarity: JLab 12 and EIC

At 12 GeV JLab, access pion form factor F_{π} : the electron beam can probe the pion cloud of the proton, at $Q^2 = 5 - 10 \text{ GeV}^2$ – experiment approved for 2018/2019

At EIC, apply the same idea to access the pion structure function, down to very low $x_{\pi} \approx 0.01$

The same process was already used at HERA to reach F_2^{π} at even lower x_{π}

kaons are well-known everywhere, even to mexican graffiters

Kaon structure: mostly unknown

Heavier s-quark \implies different valence distribution: $\int V^K(x_1) > \int V^{\pi}(x_1) \implies$ much less glue carried by the kaons than by pions.

Expectation using Dyson-Schwinger Eq. framework

The DSE prediction from C. Chen et al., PRD 93 074021, 2016 indicates the best fit to data is for gluons in kaon to carry 5% of momentum only \rightarrow

NA3, Phys.Lett.B 93 (1980) 354

 K^+ -induced DY cross-section: no valence-valence terms

$$\Sigma_{val} = \sigma^{K^- C} - \sigma^{K^+ C} \qquad R_{s/v} = \sigma^{K^+ C} / \Sigma_{val}$$

The difficulty with kaons

Secondary hadron beams produced from the 400 GeV SPS protons in a beryllium target. In a 190 GeV hadron beam we have:

- 2.5% of K⁻ in the h^- beam
- 4% of K⁺ in the h^+ beam

A high-intensity kaon beam: RF-separated

- Play with particles deflection using 2 RFcavities
- $\Delta \phi = 0 \rightarrow$ dumped on beam stopper
- Deflection of wanted particle given by: $\Delta \phi = \frac{\pi f L}{c} \frac{m_w^2 - m_u^2}{p^2}$
- Beam will not be pure. For good separation, L should increase as p², for given f →As L is limited, present limit on beam momentum is
 - $-~\sim$ 80 GeV/c on kaon beam
 - $-~\sim$ 100 GeV/c on antiproton beam

Lower beam energy \implies for a DY geometrical acceptance $\approx 40\%$ we need to cover 250 mrad.

\hookrightarrow new detector concept

A detector with large dilepton acceptance

Magnetised active absorber

- $\mu^+\mu^-$ tracking
- momentum from Lorentz kink in the magnetic field
- Good vertexing resolution
- Associated to an upstream detector for e^+e^- , ECAL-like

Starting point:

- BabyMIND detector
 - M. Antonova et al., arXiv:1704.08079 $\,$
- W-Si detectors for e^+e^- and photon, a la BNL

(AnDY; PHENIX MPCEX; PHENIX NCC – all from RHIC)

Precision on valence kaon/pion ratio

Pion case here. Expect identical for kaons.

Larger beam energy: larger DY crosssection and access to lower x_K

> \hookrightarrow We need to maximize kaon beam energy: R&D needed

mentum

line: DSE prediction, following C. Chen et al., PRD 93 074021, 2016

 \hookrightarrow Discriminating power between the existing kaon models

Kaon valence-sea separation

A first ever measurement

2 years measurement, 140 days for each kaon beam charge, with intensity 2×10^7 kaons/second

\mathbf{J}/ψ production and the kaon gluon distribution

with Color Evaporation Model

While the gg contribution is the same for the 2 kaon beam charges, there is a factor 3 difference for the $q\bar{q}$ contribution. Thus:

$$ar{u}^K u^N \propto \sigma^{K^-}_{J/\psi} - \sigma^{K^+}_{J/\psi}$$

From the knowledge of valence, within a given model we extract the $g^K g^N$ term.

Back at Spin Physics: closing the circle

Image credit: Brookhaven National Laboratory

Going beyond the collinear approximation

Taking into account the partons transverse motion (k_T) , we need 8 TMD PDFs to describe the nucleon.

Quarks and gluons have not only a longitudinal momentum (fraction x of the proton momentum), but also an intrinsic transverse momentum k_T .

Spin physics with antiproton beam

The main uncertainty to access the proton TMD PDFs from COMPASS single spin asymmetries is that they come convoluted with pion TMD PDFs.

$$\begin{aligned} & \hookrightarrow \text{Single polarized Drell-Yan with antiproton beam is cleaner} \\ & \frac{d\sigma}{dq^4 d\Omega} \propto \hat{\sigma}_U \left\{ 1 + D_2 A_U^{\cos 2\phi} \cos 2\phi + S_T \left[D_1 A_T^{\sin \phi_S} \sin \phi_S + \right. \\ & \left. + D_2 \left(A_T^{\sin(2\phi - \phi_S)} \sin(2\phi - \phi_S) + A_T^{\sin(2\phi + \phi_S)} \sin(2\phi + \phi_S) \right) \right] \right\} \end{aligned}$$

- $A_U^{\cos 2\phi}$: $h_1^{\perp}(x_2, k_{T2}) \otimes \bar{h}_1^{\perp}(x_1, k_{T1})$
- $A_T^{\sin \phi_S}: f_1(x_2, k_{T2}) \otimes \bar{f}_{1T}^{\perp}(x_1, k_{T1})$
- $A_T^{\sin(2\phi-\phi_S)}$: $h_1^{\perp}(x_2, k_{T2}) \otimes \bar{h}_1(x_1, k_{T1})$
- $A_T^{\sin(2\phi+\phi_S)}$: $h_1^{\perp}(x_2,k_{T2})\otimes \bar{h}_{1T}^{\perp}(x_1,k_{T1})$

5 "unknown" functions and 4 modulations from DY data. But on $f_1(x_2, k_{T2})$ we have some knowledge

RF-separated antiproton beam

Same limitations as with kaon RF-separated beam:

- beam momentum ≈ 110 GeV, at most
- Purity of 30-50% antiprotons come mixed with pions

 \implies transversely polarized protons using a NH₃ COMPASS-like target Use a mini-spectrometer active absorber, to access Drell-Yan $\mu^+\mu^-$ and e^+e^-

With antiproton beam at these energies one gets in the most favourable region to access valence distributions.

 \leftarrow For the same beam energy, the Drell-Yan cross-section is higher with antiproton beam than with pion beam (3 quarks vs 2 quarks)

Towards a Siver TMD extraction

The Sivers TMD is naive time reversal odd! – i.e. depends on the process

There is a "hint" that the Sivers TMD PDF has opposite sign in SIDIS and DY reactions, but statistically not yet conclusive \rightarrow COMPASS 2018 data

Much lower systematics in the proton Sivers PDF extraction if using antiproton-induced DY.

Requirements for COMPASS++/AMBER

	Physics	Beam	Beam	Trigger	Beam		Earliest	Hardware
Program	Goals	Energy	Intensity	Rate	Туре	Target	start time,	additions
		[GeV]	$[s^{-1}]$	[kHz]			duration	
muon-proton	Precision					high-		active TPC,
elastic	proton-radius	100	$4 \cdot 10^{6}$	100	μ^{\pm}	pressure	2022	SciFi trigger,
scattering	measurement					H2	1 year	silicon veto,
Hard								recoil silicon,
exclusive	GPD E	160	$2 \cdot 10^{7}$	10	μ^{\pm}	NH_3^\uparrow	2022	modified polarised
reactions							2 years	target magnet
Input for Dark	\overline{p} production	20-280	$5 \cdot 10^{5}$	25	р	LH2,	2022	liquid helium
Matter Search	cross section					LHe	1 month	target
			_					target spectrometer:
p-induced	Heavy quark	12,20	$5 \cdot 10^{7}$	25	\overline{p}	LH2	2022	tracking,
spectroscopy	exotics						2 years	calorimetry
Drell-Yan	Pion PDFs	190	$7 \cdot 10^{7}$	25	π^{\pm}	C/W	2022	
							1-2 years	
Drell-Yan	Kaon PDFs &	~ 100	10 ⁸	25-50	K^{\pm}, \overline{p}	NH_3^{\uparrow} ,	2026	"active absorber",
(RF)	Nucleon TMDs					C/Ŵ	2-3 years	vertex detector
	Kaon polarisa-						non-exclusive	
Primakoff	bility & pion	~ 100	$5 \cdot 10^{6}$	> 10	K^{-}	Ni	2026	
(RF)	life time						1 year	
Prompt							non-exclusive	
Photons	Meson gluon	≥ 100	$5 \cdot 10^{6}$	10-100	K^{\pm}	LH2,	2026	hodoscope
(RF)	PDFs				π^{\pm}	Ni	1-2 years	
K-induced	High-precision							
Spectroscopy	strange-meson	50-100	$5 \cdot 10^{6}$	25	K^{-}	LH2	2026	recoil TOF,
(RF)	spectrum						1 year	forward PID
	Spin Density							
Vector mesons	Matrix	50-100	$5 \cdot 10^{6}$	10-100	K^{\pm}, π^{\pm}	from H	2026	
(RF)	Elements					to Pb	1 year	

Table 2: Requirements for future programmes at the M2 beam line after 2021. Muon beams are in blue, conventional hadron beams in green, and RF-separated hadron beams in red.

COMPASS++/AMBER at CERN

QCD Conveners at PBC workshop, 16/01/2019 (M. Diehl, J. Pawlowski, G. Schnell)

	LHC FT gas				LHC FT	COMPASS++	MUonE	NA61++	NA60++	DIRAC++
	ALICE	LHCb	LHCSpin	AFTER@LHC	crystals					
proton PDFs	×	×		×						
nuclear PDFs	×	\times		×		×				
spin physics	×		×	×		×				
meson PDFs						×				
heavy ion physics	×			×				×	×	
elast. μ scattering						×	×			
chiral dynamics						×				×
magnet. moments					×					
spectroscopy						×				
measurements for										
cosmic rays and	×	×		×		×		×		
neutrino physics										

Table 1. Schematic overview of the physics topics addressed by the studies presented in the QCD working group.

Year	Activity	Duration	Beam
2019	Long Shutdown 2	2 years	-
2020			
2021	COMPASS-II transversity with polarised deuteron target	1 year	muon
2022	proton radius	1 year	muon
2023	Drell-Yan for π and K PDFs and charmonium production	$\lesssim 2$ years	p, K^+, π^+
2024	mechanism		\bar{p}, K^-, π^-
	Antiproton cross section for Dark Matter Search	2 month	р
2025	Long Shutdown 3 (for SPS)		

Some concluding remarks

- Progress in the field of QCD, with important contribution from COMPASS, lead to a bunch of new and old questions.
- A new experimental programme in the context of QCD physics is proposed
- More than an "experiment", we propose a modular setup, a "facility" to conduct a many QCD-related measurements
- Smooth transition from COMPASS-II to COMPASS++ and later finally to AMBER
- AMBER shall be a new Collaboration: new groups, new detector, new beam line

Preparing now the Physics Proposal

