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A new QCD facility at the M2 beam line of the
CERN SPS

Apparatus for

Meson and

Baryon

Experimental

Research

Letter of Intent at

arXiv:1808.00848 [hep-ex]
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http://arxiv.org/abs/arXiv:1808.00848


Approval of future experiments

CERN created in 2016 the Physics Beyond Colliders - PBC study group, with a

mandate to prepare the next European HEP strategy update (2019-20) on

projects for future CERN non-collider experiments.

Coordinators: Joerg Jaeckel, Mike Lamont and Claude Vallée

Last PBC annual workshop took place on 16-17 January:

PBC workshop 2019
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https://indico.cern.ch/event/755856


PBC working groups

• Physics Beyond Standard Model:

SHIP/NA64++/NA62++/KLEVER/IAXO/LSW/EDM

• QCD Physics:

COMPASS++/µ-e/LHC-FT/DIRAC++/NA60++/NA61++
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Where at CERN?

  

In the COMPASS/COMPASS-II experimental hall, since:

• Availability of both hadron and muon (unique!) beams (M2 beam line)

• Both beam charges available, and in wide range of energies (20-280 GeV)

• Re-use of large aperture dipole magnets from COMPASS

• Re-use of some of the most recent COMPASS detectors
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The origins

2002 2012 2022

COMPASS COMPASS−II AMBER
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A proto-Collaboration – ongoing

COMPASS + AMBER

• CERN

• Saclay, France

• Torino, Italy

• Trieste, Italy

• Lisbon, Portugal

• Aveiro, Portugal

• Bonn, Germany

• Munich, Germany

• Mainz, Germany

• Freiburg, Germany

• Bochum, Germany

• Prague, Czech Rep

• Kolkata, India

• Dubna, Russia

• Protvino, Russia

• Moscow, Russia

• Tel-Aviv, Israel

• Warsaw, Poland

• Yamagata, Japan

• Illinois, USA

• Taipei, Taiwan

• Tomsk, Russia

• Michigan, USA

• Chicago, USA

• Los Alamos, USA

• Tsinghua-Beijing,

China

• Lanzhou, China

• Astana, Kazakhstan

• Bologna, Italy

• Trento, Italy

• Gatchina, Russia

• ...
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AMBER physics programme

• Hadron physics with muon beam

– Proton radius from muon-proton elastic scattering

– Hard exclusive reaction with transversely polarized target

• Hadron physics with conventional hadron beams

– Pion structure from Drell-Yan and charmonium production

– Spectroscopy with low energy antiprotons

– p̄ production cross-sections for DM searches

• Hadron physics with RF-separated beams

– Spectroscopy of kaons

– Kaon structure from Drell-Yan and direct photon production

– Kaon polarizability from Primakoff reaction

– Pion and kaon-induced vector-meson production
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The proton radius puzzle: 2010
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The proton radius puzzle (still)

The proton charge radius is accessed experimentally via two different methods:

lepton scattering or atomic physics measurements.

But the obtained results differ by 5.6 σ !

• Elastic electron scattering and ”Lamb shift” measurements (H spectroscopy)

agree that the proton has a ”large” radius

• Muonic hydrogen line splitting (spectroscopy on µonic-H) sees the proton

much ”smaller”

RE = 0.879± 0.008 fm (MAMI)

RE = 0.841± 0.001 fm (CREMA)
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Proton form factors

Proton form factors in the dipole approximation:

GE(Q
2
) = GM (Q

2
)/µp =

1

(1 +Q2/a2)2

with constant a2 ≈ 0.71 GeV2/c2

and the proton anomalous magnetic moment µp ≈ 2.79 .

The electric charge radius of the proton is:

〈r2
E〉 = −6~2 dGE(Q2)

dQ2

∣∣∣∣∣
Q2→0

dipole
=

12~2

a2
≈ (0.81fm)

2 ≡ 〈r2
D〉
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Muon-Proton elastic scattering
µp→ µ′p

dσ

dQ2
=

πα2

Q4m2
p ~p

2
µ

·
[(
G2
E + τG2

M

) 4E2
µm

2
p −Q2(s−m2

µ)

1 + τ
−G2

M

2m2
µQ

2 −Q4

2

]

with Q2 = −(pµ − pµ′ )2, τ = Q2/(4m2
p) and s = (pµ + pp)2.

At high energy of the beam (160 GeV), the last term can be neglected. The sum

(G2
E + τG2

M ) can be accessed from the cross-section measurement, in the range

0.001 < Q2 < 0.02 (GeV/c)2.
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The measurement

• Advantageous wrt e-p scattering experiments like MAMI, since radiative

corrections with muon � with electron

• Radiative corrections � than at low energy µ− p scattering, like proposed

MUSE experiment (Coulomb distortion)

Active target: a high-pressure hydrogen TPC

 - 8 - 

The HV will be known with 0.01% absolute precision.   
H2 gas purity    
     In order to avoid the losses of the ionization electrons during the drift time, the 
contamination of the H2 gas by any electro-negative gas (O2, H2O) should be reduced 
to a level below 1 ppm. This will be achieved by continuous H2 purification with a special 
gas purification system,similar to that described in [5], which eliminates gas impurities 
down to <0.1ppm. 
H2 atomic density 
    The number of protons per cm3, n, in hydrogen gas as a function of Pressure, Ptech, 
and temperature, t0, is given by the following expression: 
 
 n =  5.2005·1019 ·Ptech·273.16  / (1 +0.000524 Ptech) (273.16 +t0),                         (7) 
 
 where Ptech = 735.552 mmHg.   
        In our experiment, pressure will be controlled to 0.01% absolute precision and 
temperature will be kept constant with  ±0.050  (0.014% absolute precision).  
This determines the proton density with 0.025% absolute precision. 
 

 
 
Fig.9. Tentative design of the combined TPC & FT detector. 
 

 
 
Fig. 10. TPC anode structure: 10 mm in diameter circle surrounded by 7 rings (Left 
panel).  Proton range-energy plots for H2 gas (20 bar and 4 bar) and for CH4 (20 bar) 
(Right panel). 
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Proton radius measurement setup

TPC

Elastic scattering:

• identify the recoil proton (Ep′ : 100 keV - 100 MeV)

• measure the scattering angle of the muon (θµ ∼ 100 µrad)

• long target, for high luminosity (drift time ∼ 100 µs)

• trigger on the recoil proton signal and on the small kink of scattered muon

...followed by a COMPASS-like spectrometer

Goal: uncertainty on
√
〈r2E〉 ≈ 0.01 fm
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Dark matter searches: where can we help?
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DM searches in astroparticle physics
must exist

Dark Matter: interacts only weakly

neutral

↪→ WIMPs are a favorite!

Searches for dark matter via the products of its annihilation or decay

• p̄ primary production: χχ→ qq̄,W+W−, ...→ p̄, D̄, e+, γ, ν

• p̄ secondary production: scattering of primary cosmic rays (p,He) in

interstellar medium.

2008: exciting observation of p̄ excess by

the PAMELA satellite, later confirmed

with high precision by AMS-02.

There must be an extra source of p̄ in the

Milky Way! WIMPs??
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Antiprotons production cross-section

Most of the uncertainty in the p̄ spectrum comes from: propagation model and

production cross-section.

Motivation for a precise measurement of p̄ production cross-section for incident

energies in the range ∼30 to ∼250 GeV.
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The measurement

p+ p p+4He

pbeam (GeV/c) 190 190

charged mult. 9.9 11.07

p̄ event fraction (%) 7.1 7.7

〈p〉 of p̄ (GeV/c) 15.3 14.5

Measure double differential cross-sections, in momentum and angle

• Proton beam in the range 30 < p < 250 GeV/c on liquid H2 and 4He targets.

• Low beam intensity: 105 p/second

• Beam particle identification from CEDARs

• e±, µ±, π± , K± , p and p̄ identified in the RICH

– RICH signal for p̄ in 18 < p < 45 GeV/c

– RICH as veto for p̄ in 10 < p < 18 GeV/c (not π and not K)
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Goals on p̄ production x-section

RICH mass reconstruction

Complementary to the measurements by LHCb in the TeV range.

Statistical precision ∼1%, with point-to-point systematic uncertainty <5%

(present cross-sections uncertainty in this energy range is 20-30%)
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Hadron mass hierarchy
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The proton mass from lattice QCD

in Science News
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Hadron mass hierarchy

Over the last decades, the proton structure was thoroughly explored.

Other hadrons are still unexplored:

Pions and kaons are apparently simple, yet mysterious objects.

In their different structure (and internal dynamics) hides the answer to the

”mystery” of the hadron mass hierarchy.

MASS nearly massless – a near still 2 light quarks, 3 light quarks – super

cancellation of dressed quarks but heavier bound state heavy dressed ones

SPIN S=0 implies an exact S=0 – exact S=1/2 – the good-old

cancellation – a symmetry cancellation spin puzzle
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What do we really know about the pion?

• the lightest pseudo-scalar meson (S=0, mπ = 140 MeV)

• described by 2 TMD PDFS of quarks: f1,π and h⊥1,π (plus 2 for gluons)

• 95% of the pion mass comes from dynamics (gluons+sea)

• The valence is responsible for 50-60% of the pion momentum

• Pion structure information from only few DY experiments from the 80’s
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Pion-induced Drell-Yan process

q̄q → γ∗ → µ+µ−

dσAB→ll̄X
dQ2dy

=
∑
ab

∫ 1

0

dxa

∫ 1

0

dxb Φ
A
a (xa, µ) Φ

B
b (xb, µ)

dσ̂ab→ll̄(xa, xb, Q, µ)

dQ2dy

COMPASS 2015 and 2018:

measured transverse spin asymmetries from pion-induced DY

• Hadron A: π− beam

• Hadron B: p↑ in polarized NH3 target

↪→access convolutions of TMD PDFs of the u-quark (u-quark dominance)
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How are PDFs determined?

PDFs are universal – all available measurements are used together, in global fits

to world data: DIS, pp, πp, e+e−, ...

DIS
Drell-Yan

σ ∝ PDF σ ∝ PDF ⊗ PDF

proton PDFs: Fractions of proton momentum carried by the constituent partons

fu =
∫ 1
0 dx[xu(x) + xū(x)]; fd =

∫ 1
0 dx[xd(x) + xd̄(x)]

Experimentally: fpu ≈ 0.36 and fpd ≈ 0.18

↪→ u-quarks in the proton carry twice as much momentum than d-quarks.

↪→ In total quarks carry only ≈50% of the proton momentum. The rest is

carried by gluons!
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Proton polarized PDFs Phase-space of measurements

(mostly unpolarized)

For the polarized PDFs there is much less data available, specially in some regions of

phase-space. Mostly fixed-target, recently also RHIC-Spin.

Big projects for the future: EIC, EIC-China and maybe Spin@LHC
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Proton PDFs

Unpolarized

Polarized

in PDG 2018
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And what about the pion?

Much less studied. Experimentally, it is much more difficult:

• no such thing as ”pion target”

• not so many pion beams of high energy in the world

• Few pion-induced Drell-Yan experiments, all performed in the ’80s – access

to pion valence

• scarce data on direct photon production in π± + p, also from the ’80s –

access to gluon PDF
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Pion induced Drell-Yan

Experiment Target type Beam energy Beam type Beam intensity DY mass DY events

(GeV) (part/sec) (GeV/c2)

E615 20cm W 252
π+ 17.6 × 107

4.05 – 8.55
5000

π− 18.6 × 107 30000

NA3

30cm H2 200
π+ 2.0 × 107

4.1 – 8.5
40

π− 3.0 × 107 121

6cm Pt 200
π+ 2.0 × 107

4.2 – 8.5
1767

π− 3.0 × 107 4961

NA10

120cm D2
286

π− 65 × 107 4.2 – 8.5 7800

140 4.35 – 8.5 3200

12cm W

286

π− 65 × 107

4.2 – 8.5 49600

194 4.07 – 8.5 155000

140 4.35 – 8.5 29300

COMPASS 2015
110cm NH3 190 π− 7.0 × 107 4.3 – 8.5

35000

COMPASS 2018 > 35000

• After 30 years, finally new data on pion-induced DY

• W and Pt: non-negligible nuclear effects have to be considered

• NA3 did not publish cross-sections

• COMPASS Drell-Yan cross-sections analysis ongoing

LIP Seminar 21/02/2019 C. Quintans, ”AMBER” Page 29



A roadmap for progress in this field

Strong motivation for new Drell-Yan measurements, with ultimate goals:

• Contribute to the hadron mass hierarchy puzzle

• Contribute to the hadron spin puzzles

Measurements should include and be accompanied by:

• Meson-induced Drell-Yan with both beam charges: sea-valence separation

• (Un)polarized Drell-Yan: hadron TMDs characterisation

• Meson-induced prompt photon production: glue component
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Pion structure: valence+ sea+ glue

Valence:

vπ(x1) = ūπ
−
v (x1) = dπ

−
v (x1) = uπ

+

v (x1) = d̄π
+

v (x1)

Sea (SU(3) symmetry):

Sπ(x) = ūπs (x) = uπs (x) = d̄πs (x) = dπs (x) = s̄πs (x) = sπs (x)

Assuming charge and isospin conjugation symmetry for valence and sea quarks:

Σπpv = σπ
−p − σπ

+p ∝ 1
3
uπv (upv + dpv) → Only valence-valence terms

Σπps = 4σπ
+p − σπ

−p → No valence-valence terms
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Pion Structure Function: Fπ(x1)

Simultaneous fit of NA3 π+, π−

and p at 200 GeV Drell-Yan data,

using CDHS nucleon PDF set.

NA3 Coll.; Z.Phys.C 18 (1983) 281-287

vπ(x1)

Discrepancy by 20% between E615 and

NA3/NA10, even if all 3 use the value

extracted by NA3, 〈gπ〉 = 0.47 .

E615 Coll.; Phys.Rev. D 39 (1989) 92-122
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Global fits

πx
1−10 1−10×2 1

) π
 f(

x
πx

0

0.1

0.2

0.3

0.4

0.5

valence

gluon

sea

GRV

NA3

SMRS

GRV: M. Gluck et al, Z.Phys.C 53 (1992) 651-655

SMRS: P.J. Sutton et al, Phys.Rev.D 45 (1992) 2349–2359

• SMRS did not use π+ NA3 data.

Instead, they assume 3 levels of sea:

10%, 15% or 20%.

• GRV neither. They constrain the

pion gluon distribution from pion-

induced direct photon production

(NA24, WA70)

• NA3 did not publish cross-sections.

They extract pion valence and sea

based solely on their (scarce) data.

• Large discrepancies. No error treat-

ment.

↪→ COMPASS data will provide new input on the pion valence.
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Recently: JAM pion structure extraction

JAM group revisited the old DY data, and added the leading neutron

electroproduction from HERA:

at forward angles LN is expected to be dominated by pion exchange (...but

indirect)

JAM, arXiv:1804.01965
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Pion gluon distribution: gπ

The gluon distribution in the pion can be accessed from:

direct photons

• From gluon Compton scattering:

gq(q̄)→ γq(q̄)

• From quark-antiquark annihilation:

qq̄ → γg

First mechanism dominates.

Important background of minimum bias

photons from πo and η decays.

↪→ Past measurements from WA70

and NA24.

J/ψ

Mechanism of charmonia production

not well understood, models differ:

• NRQCD (color octet+singlet):

gg fusion dominance.

• Color Evaporation Model:

qq̄ annihilation dominance.

charmonia and their polarization may

shed light into production mechanisms,

eventually allow separation and access

the gluon distribution.
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A new Drell-Yan experiment

• Both beam charges are needed

• A light isoscalar target is preferable, to avoid nuclear effects.

• DY has low cross-section (6 orders of magnitude below the hadronic

cross-section) → high luminosity needed

• Lots of hadronic products flying in the forward direction → need a hadron

absorber, to keep the spectrometer at reasonable occupancies

↪→preferably an active absorber

• As large acceptance as possible – keep first part of spectrometer compact

• Good beam particle identification is mandatory
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Target: possible (old-fashioned) design
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New DY experiment: pion sea to valence ratio

• Collect at least a factor 10 more

statistics than presently available

• Minimize nuclear effects on target

side

– Projection for 2 years of Drell-

Yan data taking

– π+ to π− 10:1 time sharing

– 190 GeV beams on Carbon

target (1.9λπint)
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Contribution to nuclear PDFs

The nuclear effects of uv(x) in Carbon are very small:

EPPS16
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Figure provided by P. Paakkinen, EPPS16 (P. Paakkinen et al, arXiv:1612.05741v1)

Projections

0 0.1 0.2 0.3 0.4 0.5
Nx

0.6

0.7

0.8

0.9

1

1.1)
 C

+ π σ-
 C- π σ

)/
(

 W
+ π σ-

 W- π σ(

nCTEQ15 W/C

EPPS16 W/C

Projection for 280 days on C-target

4.3<M/(GeV/c)<8.5
EPPS16: nuclear PDF effects from global fits,

including pion-induced DY, and new data on

neutrino DIS, and LHC p+Pb dijet, W and Z

production.

• No tension in the fit when pion-induced

DY data is added.

• But: the statistical weight of these data

is not enough to add significant addi-

tional constraints to the nuclear PDFs.

• The new experiment may have a

large impact
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Competition/Complementarity: JLab 12 and EIC

At 12 GeV JLab, access pion form factor Fπ : the electron beam can probe the

pion cloud of the proton, at Q2 = 5− 10 GeV2 – experiment approved for

2018/2019

DIS - Sullivan process

At EIC, apply the same idea to access the pion structure function, down to very

low xπ ≈ 0.01

The same process was already used at HERA to reach Fπ2 at even lower xπ
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kaons are well-known everywhere, even to mexican graffiters
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Kaon structure: mostly unknown

Heavier s-quark =⇒ different valence distribution:
∫
V K(x1) >

∫
V π(x1) =⇒

much less glue carried by the kaons than by pions.

0 0.2 0.4 0.6 0.8 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6xf
(x

)

πu

Ku

Ks 2 = 26.4 GeV2Q

Expectation using Dyson-Schwinger Eq. framework

The DSE prediction from C. Chen et al., PRD 93

074021, 2016 indicates the best fit to data is for

gluons in kaon to carry 5% of momentum only →

NA3, Phys.Lett.B 93 (1980) 354

K+-induced DY cross-section: no valence-valence terms

Σval = σK
−C − σK+C Rs/v = σK

+C/Σval
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The difficulty with kaons

Secondary hadron beams produced from

the 400 GeV SPS protons in a beryllium

target. In a 190 GeV hadron beam we

have:

• 2.5% of K− in the h− beam

• 4% of K+ in the h+ beam
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A high-intensity kaon beam: RF-separated

• Play with particles deflection using 2 RF-

cavities

• ∆φ = 0→ dumped on beam stopper

• Deflection of wanted particle given by:

∆φ = πfL
c

m2
w−m

2
u

p2

• Beam will not be pure. For good separa-

tion, L should increase as p2, for given f

↪→As L is limited, present limit on beam

momentum is

– ∼ 80 GeV/c on kaon beam

– ∼ 100 GeV/c on antiproton beam

Lower beam energy =⇒ for a DY geometrical acceptance ≈40% we need to cover

250 mrad.

↪→ new detector concept
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A detector with large dilepton acceptance

Magnetised active absorber

• µ+µ− tracking

• momentum from Lorentz kink in the

magnetic field

• Good vertexing resolution

• Associated to an upstream detector for

e+e−, ECAL-like

Starting point:

• BabyMIND detector

M. Antonova et al., arXiv:1704.08079

• W-Si detectors for e+e− and photon, a

la BNL

(AnDY; PHENIX MPCEX; PHENIX NCC – all

from RHIC)
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Precision on valence kaon/pion ratio

Pion case here. Expect identical for kaons.

πx0 0.2 0.4 0.6 0.8 1

π
dxdN

10

210

310

140 GeV

120 GeV

100 GeV

80 GeV

60 GeV

Larger beam energy: larger DY cross-

section and access to lower xK

↪→We need to maximize kaon beam

energy: R&D needed

0 0.2 0.4 0.6 0.8 1
x
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0.4
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0.8

1

1.2

1.4

(x
)

π
(x

)/
u

Ku

 channel-µ+µThis: 

 channel-e+This: e

NA3

• • 140 days of K− beam of 100 GeV mo-

mentum

line: DSE prediction, following C. Chen et

al., PRD 93 074021, 2016

↪→Discriminating power between the

existing kaon models
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Kaon valence-sea separation

A first ever measurement
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2 years measurement, 140 days for each kaon beam charge, with intensity

2× 107 kaons/second
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J/ψ production and the kaon gluon distribution

with Color Evaporation Model
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While the gg contribution is the same for the 2 kaon beam charges, there is a

factor 3 difference for the qq̄ contribution. Thus:

ūKuN ∝ σK
−

J/ψ − σ
K+

J/ψ

From the knowledge of valence, within a given model we extract the gKgN term.
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Back at Spin Physics: closing the circle

Image credit: Brookhaven National Laboratory
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Going beyond the collinear approximation

Taking into account the partons transverse motion

(kT ), we need 8 TMD PDFs to describe the nucleon.

Quarks and gluons have not only a lon-

gitudinal momentum (fraction x of the

proton momentum), but also an intrin-

sic transverse momentum kT .
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Spin physics with antiproton beam

The main uncertainty to access the proton TMD PDFs from COMPASS single

spin asymmetries is that they come convoluted with pion TMD PDFs.

↪→ Single polarized Drell-Yan with antiproton beam is cleaner

dσ
dq4dΩ

∝ σ̂U
{

1 +D2A
cos 2φ
U cos 2φ+ ST

[
D1A

sinφS
T sinφS+

+D2

(
A

sin(2φ−φS)

T sin(2φ− φS) + A
sin(2φ+φS)

T sin(2φ+ φS)
)]}

• Acos 2φ
U : h⊥1 (x2, kT2)⊗ h̄⊥1 (x1, kT1)

• A
sinφS
T : f1(x2, kT2)⊗ f̄⊥1T (x1, kT1)

• A
sin(2φ−φS)
T : h⊥1 (x2, kT2)⊗ h̄1(x1, kT1)

• A
sin(2φ+φS)
T : h⊥1 (x2, kT2)⊗ h̄⊥1T (x1, kT1)

5 ”unknown” functions and 4 modulations from DY data. But on f1(x2, kT2) we

have some knowledge
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RF-separated antiproton beam

Same limitations as with kaon RF-separated beam:

• beam momentum ≈ 110 GeV, at most

• Purity of 30-50% – antiprotons come mixed with pions

=⇒ transversely polarized protons using a NH3 COMPASS-like target

Use a mini-spectrometer active absorber, to access Drell-Yan µ+µ− and e+e−

Beam energy (GeV)
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pp
p-π

With antiproton beam at these energies one

gets in the most favourable region to access

valence distributions.

← For the same beam energy, the Drell-

Yan cross-section is higher with antiproton

beam than with pion beam (3 quarks vs 2

quarks)
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Towards a Siver TMD extraction

COMPASS, Phys.Rev.Lett. 119, 112002 (2017)

The Sivers TMD is naive time reversal

odd! – i.e. depends on the process

f⊥1T (SIDIS) = - f⊥1T (DY)

There is a ”hint” that the Sivers TMD

PDF has opposite sign in SIDIS and

DY reactions, but statistically not yet

conclusive → COMPASS 2018 data

Much lower systematics in the proton Sivers PDF extraction if using

antiproton-induced DY.
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Requirements for COMPASS++/AMBER
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COMPASS++/AMBER at CERN

QCD Conveners at PBC workshop, 16/01/2019 (M. Diehl, J. Pawlowski, G. Schnell)
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Some concluding remarks

• Progress in the field of QCD, with important contribution from COMPASS,

lead to a bunch of new and old questions.

• A new experimental programme in the context of QCD physics is proposed

• More than an ”experiment”, we propose a modular setup, a ”facility” to

conduct a many QCD-related measurements

• Smooth transition from COMPASS-II to COMPASS++ and later finally to

AMBER

• AMBER shall be a new Collaboration: new groups, new detector, new beam

line

Preparing now the Physics Proposal
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