The structure of hadrons

Research opportunities

Alfred Stadler CFTP - IST Lisbon, and University of Évora

Team members

Hadrons

Hadrons are strongly interacting particles.

- Observed hadrons are mesons (π , η , ρ , ω , K, ...) and baryons (ρ , n, Δ , Λ , Σ , ...)
- QCD: fundamental degrees of freedom are quarks and gluons (not directly observed)
- Hadrons are interpreted as bound states: mesons as $q\bar{q}$, baryons as qqq
- Can we understand the measured hadron properties in terms of quarks and gluons?

Theory

- QCD is <u>very</u> hard to solve (non-perturbative at low energies)
- Bound states cannot be obtained in perturbation theory, need an infinite number of Feynman diagrams

Which tools are available?

- Lattice QCD (on discretized space-time)
- Dyson-Schwinger/Bethe-Salpeter type equations
 - (integral equations: sum an infinite series of a selected class of diagrams) Our framework: Covariant Spectator Theory (CST)

▶...

Quark-antiquark interaction

Charmonium $c\bar{c}$ quite well described with the Cornell potential in the Schrödinger equation:

Confinement (long distance) One-gluon-exchange (short distance)

Allton et al, UKQCD Collab., PRD 65, 054502 (2002)

Quark-antiquark interaction

Meson masses and wave functions

Solutions of the CST bound-state equations:

- meson masses
- vertex functions \rightarrow relativistic wave functions

Mass spectra of heavy and heavy-light mesons

Mass spectra of heavy and heavy-light mesons

Topic 1: Tensor mesons

Calculation of tensor mesons (spin ≥ 2)

Topic 2: Role of relativity

Relativistically covariant quark-antiquark interaction kernel

central spin-spin spin-orbit tensor

- Calculate nonrelativistic limit of $q\bar{q}$ interaction, but keep first order relativistic correction (\rightarrow hyperfine interaction)
- Solve nonrelativistic equation with relativistic corrections
- Compare with full relativistic results (masses and wave functions)
- As quark masses become smaller, where does the nonrelativistic description break down?

Topic 3: Quark mass function

- A quark can interact with itself through the same mechanism as with another quark
- This quark self-interaction generates a momentum-dependent mass
- We have already calculated the gluon-contribution to the quark mass function in CST
- What still needs to be calculated is the contribution of the confining interaction

Topic 4: Baryons in a quark-diquark model

- Combine two quarks to a diquark (baryon \rightarrow two-body problem)
- Quark-diquark interaction is related to quark-antiquark interaction
- Calculations are similar to mesons, but diquark spin is 0 or 1
- Calculate baryon spectrum, relativistic wave functions, form factors, ...

More research topics

- There are other related research topics for masters theses
- And many other more advanced topics more suited for Ph. D. work

Ask me if you want to know more!