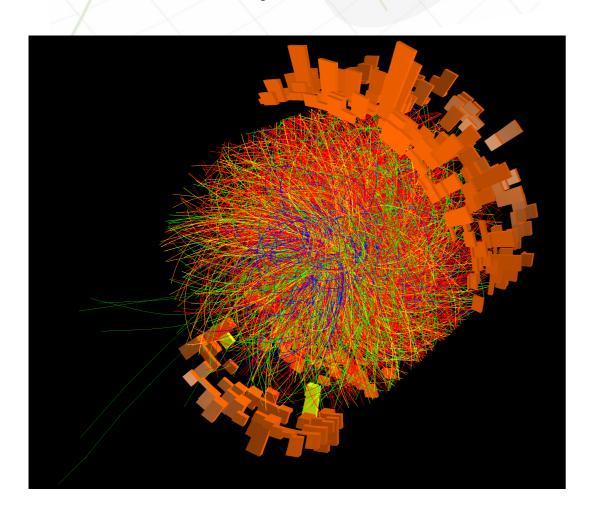
Phenomenology of Heavy Ion Collisions

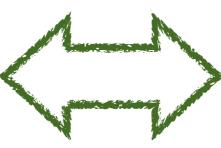
Liliana Apolinário



- Who are we?
 - Group of physicists (theorists, phenomenologist and experimentalists) dedicated to make the bridge between data and theory:

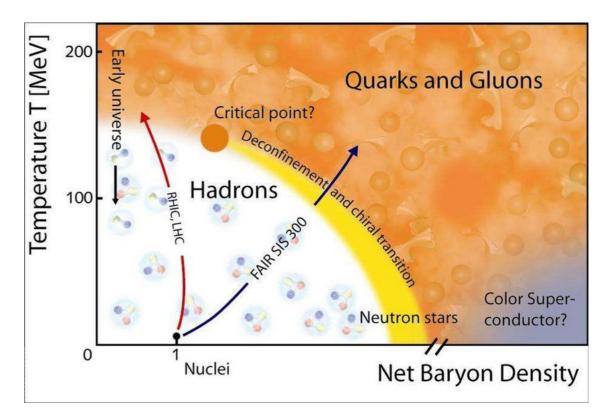
- Who are we?
 - Group of physicists (theorists, phenomenologist and experimentalists) dedicated to make the bridge between data and theory:


```
\mathcal{L}_{SM} = -\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - g^{a}_{\mu}g^{b}_{\nu}g^{c}_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} - g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu} - g^{a}_{\nu}g^{a}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\nu}g^{e}_{\mu}g^{e}_{\nu}g^{d}_{\nu}g^{e}_{\mu}g^{e}_{\nu}g^{e}_{\mu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\mu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\mu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e}_{\nu}g^{e
                 M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_{w}(\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - igc_{w}(\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})) - igc_{w}(\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}))
                                                                             Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})) - igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})) - igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})) - igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})) - igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\nu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})) - igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\nu}^{-})) - igs_{w}(\partial_{\nu}A_{\mu}^{-}W_{\nu}^{-}) - igs_
                                                                                                                                                    (W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) -
                                                                                     \frac{1}{2}g^2W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^2W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + g^2c_{w}^2(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) +
                                                                                                                                     g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w (A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^+ W_\mu^-) - W_\mu^+ W_\mu^-)
                                                                                                                                                                   2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - 2M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} -
                 \beta_h \left( \frac{2M^2}{a^2} + \frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - g\alpha_h M \left( H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{a^2}\alpha_h - \frac{2M^4}{a^2}\alpha
                          \frac{1}{5}g^{2}\alpha_{h}\left(H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}\right)-gMW_{\mu}^{+}W_{\mu}^{-}H-
                                                                                                                                                    \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig\left(W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})\right) +
                                                     \frac{1}{2}g\left(W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}g\frac{1}{c_{-}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}^{-}(H\partial_{\mu}\phi^{0}-\phi^{0}-\phi^{0}\partial_{\mu}H)+Z_{\mu}
              M\left(\frac{1}{c_{\mu}}Z_{\mu}^{0}\partial_{\mu}\phi^{0} + W_{\mu}^{+}\partial_{\mu}\phi^{-} + W_{\mu}^{-}\partial_{\mu}\phi^{+}\right) - ig\frac{s_{w}^{2}}{c_{w}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})
                                                                                                                                           W_{\mu}^{-}\phi^{+}) -ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})+igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})-ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})
                                                                    \frac{1}{4}g^2W_{\mu}^{+}W_{\mu}^{-}\left(H^2+(\phi^0)^2+2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)
                                                     \frac{1}{5}g^2\frac{s_w^2}{2}Z_u^0\phi^0(W_u^+\phi^- + W_u^-\phi^+) - \frac{1}{5}ig^2\frac{s_w^2}{2}Z_u^0H(W_u^+\phi^- - W_u^-\phi^+) + \frac{1}{5}g^2s_wA_u\phi^0(W_u^+\phi^- + W_u^-\phi^-) + \frac{1}{5}g^2s_wA_u\phi^- + W_u^-\phi^-) + \frac{1}{5}g^2s_wA_u\phi^- + W_u^-\phi^-) + \frac{1}{5}g^2s_wA_u\phi^- + W_u^-\phi^-) + \frac{1}{5}g^2s_wA_u\phi^- + W_u^-\phi^- + W_u^-\phi^-) + \frac{1}{5}g^2s_wA_u\phi^- + W_u^-\phi^- + W_u^-\phi^-) + \frac{1}{5}g^2s_wA_u\phi^- + W_u^-
                             W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - g^{2}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} + g^{2}s_{w}^{2}A_{\mu}A_{\mu}\phi^{-} + g^{2}s_{w}^{
              \frac{1}{2}ig_s\,\lambda_{ij}^a(\bar{q}_i^\sigma\gamma^\mu q_i^\sigma)g_u^a - \bar{e}^\lambda(\gamma\partial + m_e^\lambda)e^\lambda - \bar{\nu}^\lambda(\gamma\partial + m_\nu^\lambda)\nu^\lambda - \bar{u}_i^\lambda(\gamma\partial + m_u^\lambda)u_i^\lambda - \bar{d}_i^\lambda(\gamma\partial + m_d^\lambda)d_i^\lambda + \bar{u}_i^\lambda(\gamma\partial + m_u^\lambda)u_i^\lambda - \bar{d}_i^\lambda(\gamma\partial + m_d^\lambda)d_i^\lambda + \bar{u}_i^\lambda(\gamma\partial + m_u^\lambda)u_i^\lambda - \bar{u}_i^\lambda(\gamma\partial + m_u
                          igs_w A_\mu \left( -(\bar{e}^\lambda \gamma^\mu e^\lambda) + \frac{2}{3} (\bar{u}_j^\lambda \gamma^\mu u_j^\lambda) - \frac{1}{3} (\bar{d}_j^\lambda \gamma^\mu d_j^\lambda) \right) + \frac{ig}{4c_w} Z_\mu^0 \{ (\bar{\nu}^\lambda \gamma^\mu (1 + \gamma^5) \nu^\lambda) + (\bar{e}^\lambda \gamma^\mu (4s_w^2 - ig) \nu^\lambda) + (\bar{e}^\lambda \gamma^\mu (4s_
                                                                                                                                                                                                (1-\gamma^5)e^{\lambda}) + (\bar{d}_i^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1-\gamma^5)d_i^{\lambda}) + (\bar{u}_i^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_w^2+\gamma^5)u_i^{\lambda})} +
                                                                                                                                                                                                                        \frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{i}^{\kappa})\right)+
                                                                                                                                                                                                                     \frac{iq}{2\sqrt{2}}W_{\mu}^{-}\left((\bar{e}^{\kappa}U^{lep}{}_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}_{j}^{\kappa}C_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})\right)+
                                                                                                                                                                                          \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+
                                                                             \frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda})-
                                                                                                             \frac{g}{2}\frac{m_{\phi}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\phi}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{\phi}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{ig}{2}\frac{m_{\phi}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa}
                                                  \frac{1}{4} \overline{\nu_{\lambda}} M_{\lambda \kappa}^{R} (1 - \gamma_{5}) \widehat{\nu_{\kappa}} + \frac{ig}{2M\sqrt{2}} \phi^{+} \left( -m_{d}^{\kappa} (\overline{u}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\overline{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa} \right) +
\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}\right) - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) +
                                                                                                                                                                                                                                                                                                                                                                                                       \frac{ig}{2}\frac{m_u^\lambda}{M}\phi^0(\bar{u}_i^\lambda\gamma^5u_i^\lambda) - \frac{ig}{2}\frac{m_d^\lambda}{M}\phi^0(\bar{d}_i^\lambda\gamma^5d_i^\lambda)
```

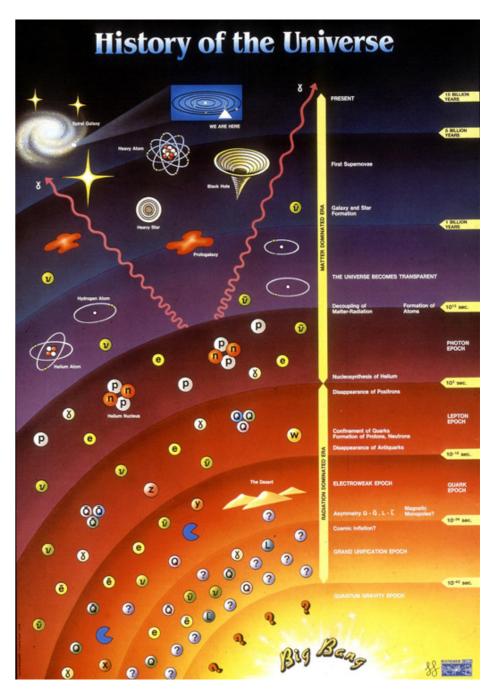

- Who are we?
 - Group of physicists (theorists, phenomenologist and experimentalists) dedicated to make the bridge between data and theory:


```
\mathcal{L}_{SM} = -\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}\partial_{\nu}W^{-}_{\mu}
                   M^2W_{\mu}^+W_{\mu}^- - \frac{1}{2}\partial_{\nu}Z_{\mu}^0\partial_{\nu}Z_{\mu}^0 - \frac{1}{2c^2}M^2Z_{\mu}^0Z_{\mu}^0 - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_w(\partial_{\nu}Z_{\mu}^0(W_{\mu}^+W_{\nu}^- - W_{\nu}^+W_{\mu}^-) - igc_w(\partial_{\nu}Z_{\mu}^0(W_{\mu}^+W_{\nu}^- - W_{\nu}^+W_{\mu}^-))
                                                                                  Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})+Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}))-igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{-}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{-}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{-}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{-}))+igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{-}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{-}))+igs_{
                                                                                                                                                              W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) -
                                                                                           \frac{1}{2}g^2W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^2W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + g^2c_w^2(Z_{\mu}^0W_{\mu}^{+}Z_{\nu}^0W_{\nu}^{-} - Z_{\mu}^0Z_{\mu}^0W_{\nu}^{+}W_{\nu}^{-}) +
                                                                                                                                              g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w (A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^+ W_\mu^-) -
                                                                                                                                                                                 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - 2M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} -
                   \beta_h \left( \frac{2M^2}{\sigma^2} + \frac{2M}{\sigma} H + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) \right) + \frac{2M^4}{\sigma^2} \alpha_h - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^- \right) - g \alpha_h M \left( H^3 + H \phi^0 \phi^0 + 2H \phi^- \right) - g \alpha_h 
                            \frac{1}{8}g^{2}\alpha_{h}\left(H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}\right)-gMW_{\mu}^{+}W_{\mu}^{-}H-\frac{1}{8}g^{2}\alpha_{h}\left(H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}\right)-gMW_{\mu}^{+}W_{\mu}^{-}H-\frac{1}{8}g^{2}\alpha_{h}\left(H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}\right)-gMW_{\mu}^{+}W_{\mu}^{-}H-\frac{1}{8}g^{2}\alpha_{h}\left(H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}\right)-gMW_{\mu}^{+}W_{\mu}^{-}H-\frac{1}{8}g^{2}\alpha_{h}\left(H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}\right)
                                                                                                                                                              \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig\left(W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})\right) +
                                                         \frac{1}{2}g\left(W_{\mu}^{+}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) + W_{\mu}^{-}(H\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}H)\right) + \frac{1}{2}g\frac{1}{c_{-}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) +
               M\left(\frac{1}{c_{\mu}}Z_{\mu}^{0}\partial_{\mu}\phi^{0} + W_{\mu}^{+}\partial_{\mu}\phi^{-} + W_{\mu}^{-}\partial_{\mu}\phi^{+}\right) - ig\frac{s_{\mu}^{2}}{c_{\mu}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})
                                                                                                                                                        W_{\mu}^{-}\phi^{+}) -ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})+igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})-
                                                                     \frac{1}{4}g^2W_{\mu}^{+}W_{\mu}^{-}\left(H^2+(\phi^0)^2+2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2W_{\mu}^{+}W_{\mu}^{-}\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)
                                                         \frac{1}{2}g^2\frac{s_w^2}{c_w}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^- + W_{\mu}^-\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{c_w}Z_{\mu}^0H(W_{\mu}^+\phi^- - W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^- + W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_
                            W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{u}^{0}A_{\mu}\phi^{+}\phi^{-} - g^{2}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} + g^{2}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-})
               \frac{1}{2}ig_s\,\lambda_{ij}^a(\bar{q}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^a - \bar{e}^\lambda(\gamma\partial + m_e^\lambda)e^\lambda - \bar{\nu}^\lambda(\gamma\partial + m_\nu^\lambda)\nu^\lambda - \bar{u}_i^\lambda(\gamma\partial + m_u^\lambda)u_i^\lambda - \bar{d}_i^\lambda(\gamma\partial + m_d^\lambda)d_i^\lambda + \bar{u}_i^\lambda(\gamma\partial + m_u^\lambda)u_i^\lambda - \bar{d}_i^\lambda(\gamma\partial + m_d^\lambda)d_i^\lambda + \bar{u}_i^\lambda(\gamma\partial + m_u^\lambda)u_i^\lambda - \bar{u}_i^\lambda(\gamma\partial + m_u
                            igs_w A_\mu \left( -(\bar{e}^\lambda \gamma^\mu e^\lambda) + \frac{2}{3} (\bar{u}_j^\lambda \gamma^\mu u_j^\lambda) - \frac{1}{3} (\bar{d}_j^\lambda \gamma^\mu d_j^\lambda) \right) + \frac{ig}{4c_w} Z_\mu^0 \{ (\bar{\nu}^\lambda \gamma^\mu (1 + \gamma^5) \nu^\lambda) + (\bar{e}^\lambda \gamma^\mu (4s_w^2 - ig) \nu^\lambda) + (\bar{e}^\lambda \gamma^\mu (4s_
                                                                                                                                                                                                              (1-\gamma^5)e^{\lambda} + (\bar{d}_i^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 - \gamma^5)d_i^{\lambda}) + (\bar{u}_i^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_w^2 + \gamma^5)u_i^{\lambda})\} +
                                                                                                                                                                                                                                          \frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{i}^{\kappa})\right)+
                                                                                                                                                                                                                                    \frac{iq}{2\sqrt{2}}W_{\mu}^{-}\left((\bar{e}^{\kappa}U^{lep}{}_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{d}_{j}^{\kappa}C_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})\right)+
                                                                                                                                                                                                       \frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+
                                                                                  \frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda})-
                                                                                                               \frac{\frac{q}{2}\frac{m_{\phi}^{2}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{iq}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{iq}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1 - \gamma_{5})\hat{\nu}_{\kappa} - \frac{iq}{2}\frac{m_{\phi}^{2}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{iq}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1 - \gamma_{5})\hat{\nu}_{\kappa} - \frac{iq}{2}\frac{m_{\phi}^{2}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{iq}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{iq}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}e^{\lambda}) + \frac{iq}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma
                                                     \frac{1}{4} \overline{\nu_{\lambda}} M_{\lambda \kappa}^{R} (1 - \gamma_{5}) \hat{\nu_{\kappa}} + \frac{ig}{2M\sqrt{2}} \phi^{+} \left( -m_{d}^{\kappa} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\lambda}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\lambda}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\lambda}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\lambda}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa
\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})-m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}\right)-\frac{g}{2}\frac{m_\eta^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+
                                                                                                                                                                                                                                                                                                                                                                                                                               \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{ig}{2} \frac{m_d^{\lambda}}{M} \phi^0(\bar{d}_i^{\lambda} \gamma^5 d_i^{\lambda})
```

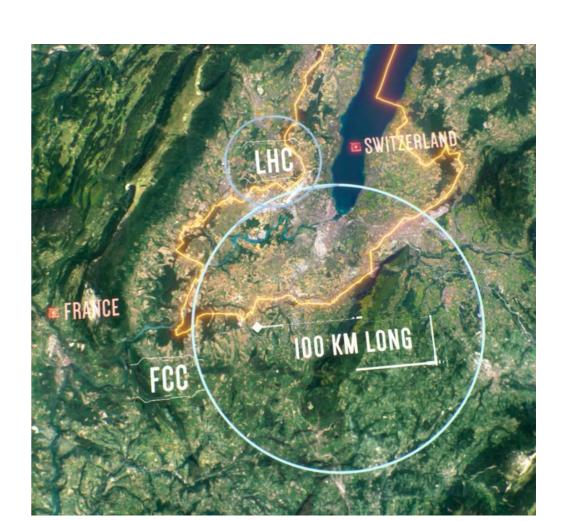
- Who are we?
 - Group of physicists (theorists, phenomenologist and experimentalists) dedicated to make the bridge between data and theory:



 $\mathcal{L}_{SM} = -\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu}$ $M^2W_{\mu}^+W_{\mu}^- - \frac{1}{2}\partial_{\nu}Z_{\mu}^0\partial_{\nu}Z_{\mu}^0 - \frac{1}{2c^2}M^2Z_{\mu}^0Z_{\mu}^0 - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_w(\partial_{\nu}Z_{\mu}^0(W_{\mu}^+W_{\nu}^- - W_{\nu}^+W_{\mu}^-) - igc_w(\partial_{\nu}Z_{\mu}^0(W_{\mu}^+W_{\nu}^- - W_{\nu}^+W_{\mu}^-))$ $Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})+Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}))-igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))-igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))$ $W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) \frac{1}{2}g^2W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^2W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + g^2c_w^2(Z_{\mu}^0W_{\mu}^{+}Z_{\nu}^0W_{\nu}^{-} - Z_{\mu}^0Z_{\mu}^0W_{\nu}^{+}W_{\nu}^{-}) +$ $g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w (A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^+ W_\mu^-) - W_\nu^+ W_\mu^-)$ $2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - 2M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} \beta_h \left(\frac{2M^2}{\sigma^2} + \frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{\sigma^2}\alpha_h - \frac{2M^$ $\frac{1}{5}g^{2}\alpha_{h}\left(H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}\right)-gMW_{\mu}^{+}W_{\mu}^{-}H \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig\left(W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})\right) +$ $\frac{1}{2}g\left(W_{\mu}^{+}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) + W_{\mu}^{-}(H\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}H)\right) + \frac{1}{2}g\frac{1}{c_{-}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) +$ $M\left(\frac{1}{c_{\nu}}Z_{\mu}^{0}\partial_{\mu}\phi^{0} + W_{\mu}^{+}\partial_{\mu}\phi^{-} + W_{\mu}^{-}\partial_{\mu}\phi^{+}\right) - ig\frac{s_{w}^{2}}{c_{\nu}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})$ $W_{\mu}^{-}\phi^{+}$) $-ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})+igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+}) \frac{1}{4}g^2W_{\mu}^{+}W_{\mu}^{-}\left(H^2+(\phi^0)^2+2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2Z_{\mu}^0Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)$ $\frac{1}{2}g^2\frac{s_w^2}{2}Z_u^0\phi^0(W_u^+\phi^- + W_u^-\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{2}Z_u^0H(W_u^+\phi^- - W_u^-\phi^+) + \frac{1}{2}g^2s_wA_u\phi^0(W_u^+\phi^- + W_u^-\phi^-) + \frac{1}$ $W_{\mu}^{2}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - g^{2}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} + g^{2}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-})$ $\frac{1}{2}ig_s\,\lambda_{ij}^a(\bar{q}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^a - \bar{e}^\lambda(\gamma\partial + m_e^\lambda)e^\lambda - \bar{\nu}^\lambda(\gamma\partial + m_\nu^\lambda)\nu^\lambda - \bar{u}_j^\lambda(\gamma\partial + m_u^\lambda)u_j^\lambda - \bar{d}_j^\lambda(\gamma\partial + m_d^\lambda)d_j^\lambda + \bar{u}_j^\lambda(\gamma\partial + m_u^\lambda)u_j^\lambda - \bar{d}_j^\lambda(\gamma\partial + m_d^\lambda)d_j^\lambda + \bar{u}_j^\lambda(\gamma\partial + m_u^\lambda)u_j^\lambda - \bar{u}_j^\lambda(\gamma\partial + m_u$ $igs_w A_\mu \left(-(\bar{e}^\lambda \gamma^\mu e^\lambda) + \frac{2}{3} (\bar{u}_j^\lambda \gamma^\mu u_j^\lambda) - \frac{1}{3} (\bar{d}_j^\lambda \gamma^\mu d_j^\lambda) \right) + \frac{ig}{4c_w} Z_\mu^0 \{ (\bar{\nu}^\lambda \gamma^\mu (1 + \gamma^5) \nu^\lambda) + (\bar{e}^\lambda \gamma^\mu (4s_w^2 - ig) \nu^\lambda) \}$ $(1-\gamma^5)e^{\lambda} + (\bar{d}_i^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 - \gamma^5)d_i^{\lambda}) + (\bar{u}_i^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_w^2 + \gamma^5)u_i^{\lambda})\} +$ $\frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{i}^{\kappa})\right)+$ $\frac{iq}{2\sqrt{2}}W_{\mu}^{-}\left(\left(\bar{e}^{\kappa}U^{lep}_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}\right)+\left(\bar{d}_{i}^{\kappa}C_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{i}^{\lambda}\right)\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{\frac{g}{2}\frac{m_{\phi}^{2}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\psi}^{2}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1 - \gamma_{5})\hat{\nu}_{\kappa} - \frac{ig}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1 - \gamma_{5})\hat{\nu}_{\kappa} - \frac{ig}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1 - \gamma_{5})\hat{\nu}_{\kappa} - \frac{ig}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) + \frac{ig}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{ig}{2}\frac{m_{\phi}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) + \frac{ig}{2}\frac{m_{\phi}^{2}}{M}\phi$ $\frac{1}{4} \overline{\nu_{\lambda}} M_{\lambda \kappa}^{R} (1 - \gamma_{5}) \hat{\nu_{\kappa}} + \frac{ig}{2M\sqrt{2}} \phi^{+} \left(-m_{d}^{\kappa} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\lambda}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\lambda}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\lambda}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\lambda}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})-m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}\right)-\frac{g}{2}\frac{m_\eta^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+$ $\frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_i^{\lambda} \gamma^5 u_i^{\lambda}) - \frac{ig}{2} \frac{m_d^{\lambda}}{M} \phi^0(\bar{d}_i^{\lambda} \gamma^5 d_i^{\lambda})$


Heavy-lons @ Pheno

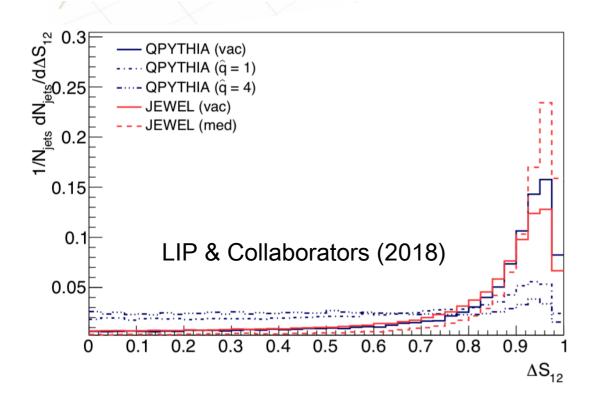
- Phenomenology of Heavy-Ions: Why?
 - Unique window for corner of QCD Phase Space

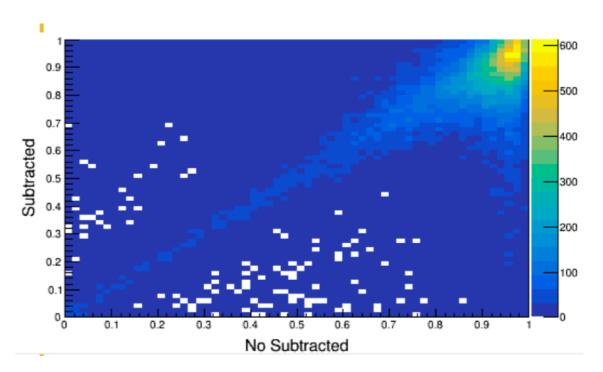

Heavy-lons @ Pheno

- Phenomenology of Heavy-Ions: Why?
 - Unique window for corner of QCD Phase Space
 - Direct link to Early Universe ("Mini-bang" vs "Big-bang")

Heavy-lons @ Pheno

- Phenomenology of Heavy-Ions: Why?
 - Unique window for corner of QCD Phase Space
 - Direct link to Early Universe ("Mini-bang" vs "Big-bang")
 - Major part of the physics program at current (LHC, RHIC) and future (FCC) high energy particle physics accelerators

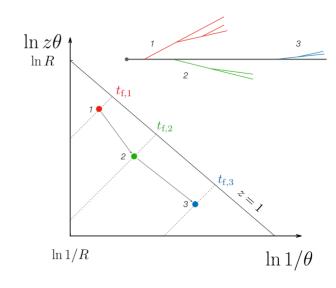



Probing the QGP

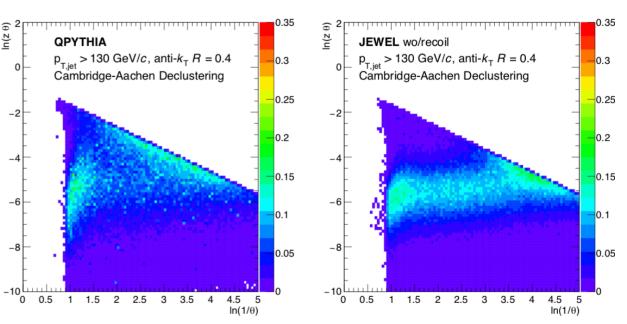
- Novel observables for Heavy-Ion collisions;
 - Evaluate QCD jet-medium interactions

Novel subjet observables for jet quenching in heavy-ion collisions

Liliana Apolinário^{1,2a}, José Guilherme Milhano^{1,2,3b}, Mateusz Ploskon^{4c}, and Xiaoming Zhang^{5d}


& João Diogo Mesquita (LIP Summer Internship 2018) Results: 40th edition of Pulsar (NFIST)

Probing the QGP

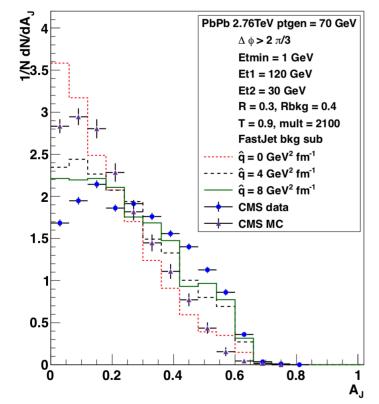

- Novel observables for Heavy-Ion collisions;
 - Evaluate QCD jet-medium interactions
 - Distinguish pp-like jets from AA-like jets

Novel tools and observables for jet physics in heavy-ion collisions

Harry Arthur Andrews¹, Liliana Apolinario^{2,3}, Redmer Alexander Bertens⁴, Christian Bierlich^{5,6}, and the Cacciari^{7,8}, Yi Chen⁹, Yang-Ting Chien¹⁰, Leticia Cunqueiro Mendez^{11,4}, Michal Deak¹², David d'Enterria⁹, Fabio Dominguez¹³, Philip Coleman Harris¹⁴, Krzysztof Kutak¹², Yen-Jie Lee¹⁴, Yacine Mehtar-Tani^{15,16}, James Mulligan¹⁷, Matthew Nguyen¹⁸, Chang Ning-Bo¹⁹, Dennis Perepelitsa²⁰, Gavin Salam*²¹, Martin Spousta²², José Guilherme Milhano^{2,3,21}, Konrad Tywoniuk²¹, Marco Van Leeuwen²³, Marta Verweij^{24,25}, Victor Vila¹³, Urs A. Wiedemann²¹, and Korinna C. Zapp^{2,21}

LIP & Collaborators (2018)

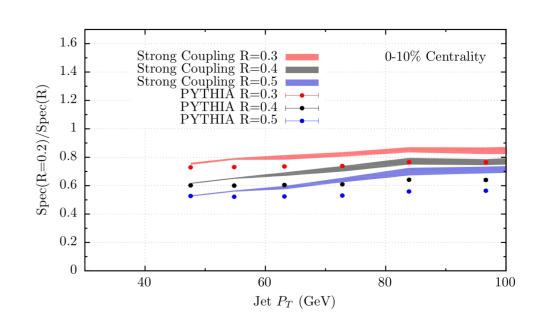
Monte Carlo Development


- Jet Quenching Monte Carlo event generators;
 - Improve current model for jet-medium interaction

LIP & Collaborators (2014-...)

LIP & Collaborators (2013-...)

An analysis of the influence of background subtraction and quenching on jet observables in heavy-ion collisions


Liliana Apolinário a,b , Néstor Armesto a and Leticia Cunqueiro c,d

perturbative approach

Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model

Jorge Casalderrey-Solana, a,b Doga Can Gulhan, c José Guilherme Milhano, d,e,f Daniel Pablos, b Krishna Rajagopal g

non perturbative approach

Theoretical improvements

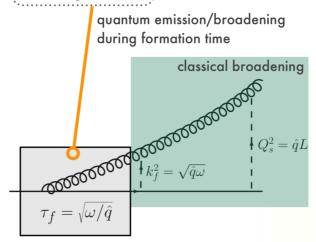
→ Jet Quenching description beyond current kinematic limitations:

✓ jet structure is modified by QGP

$$\mathcal{R}_q^{\rm med} \approx 4\omega \int_0^L dt' \int \frac{d^2 {\pmb k'}}{(2\pi)^2} \mathcal{P}({\pmb k}-{\pmb k'},L-t') \sin\left(\frac{{\pmb k'}^2}{2k_{\rm f}^2}\right) e^{-\frac{{\pmb k'}^2}{2k_{\rm f}^2}}$$
 quantum emission/broadening during formation time
$$\frac{{\rm classical\ broadening}}{|{\pmb k}_f^2| = \sqrt{\hat q \omega}}$$

Theoretical improvements

Jet Quenching description beyond current kinematic limitations:

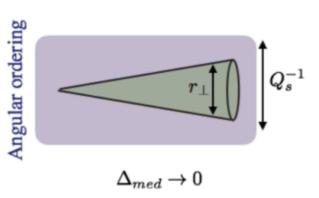

LIP & Collaborators (2017)

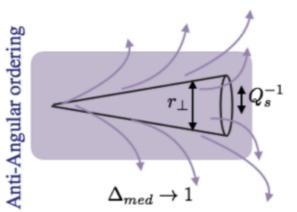
Factorization of in-medium parton branching beyond the eikonal approximation

✓ jet structure is modified by QGP

Liliana Apolinário^a, Néstor Armesto^b, José Guilherme Milhano^{a,c}, Carlos A. Salgado^b

$$\mathcal{R}_q^{\text{med}} \approx 4\omega \int_0^L dt' \int \frac{d^2 \mathbf{k'}}{(2\pi)^2} \mathcal{P}(\mathbf{k} - \mathbf{k'}, L - t') \sin\left(\frac{\mathbf{k'}^2}{2k_{\text{f}}^2}\right) e^{-\frac{\mathbf{k'}^2}{2k_{\text{f}}^2}}$$

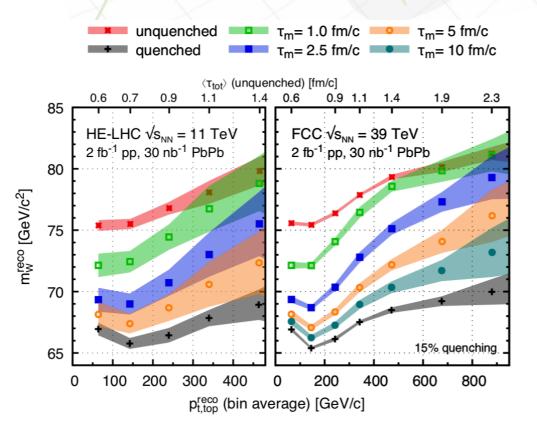



Quark and Gluon Jet Energy Loss

LIP & Collaborators (2018)

Liliana Apolinário a,b , João Barata *c and Guilherme Milhano a,b

João Barata (former MsC student)



Future Colliders

- Physics opportunities for future accelerators;
 - Jet substructure to probe different QGP lifetimes

Probing the time structure of the quark-gluon plasma with top quarks

Liliana Apolinário,^{1,2} José Guilherme Milhano,^{1,2,3} Gavin P. Salam,^{3,*} and Carlos A. Salgado⁴

Heavy ions at the Future Circular Collider

A. Dainese ¹, U.A. Wiedemann ² (editors), N. Armesto ³, D. d'Enterria ², J.M. Jowett ², J.-P. Lansberg ⁴, J.G. Milhano ^{5,2}, C.A. Salgado ³, M. Schaumann ², M. van Leeuwen ^{6,7} (section editors), J.L. Albacete ⁸, A. Andronic ⁹, P. Antonioli ¹⁰, L. Apolinário ⁵, S. Bass ¹¹, A. Beraudo ¹², A. Bilandzic ¹³, S. Borsanyi ¹⁴, P. Braun-Munzinger ⁹, Z. Chen ¹⁵, L. Cunqueiro Mendez ¹⁶, G.S. Denicol ¹⁷, K.J. Eskola ¹⁸, S. Floerchinger ¹⁹, H. Fujii ²⁰, P. Giubellino ¹², C. Greiner ²¹, J.F. Grosse-Oetringhaus ², C.-M. Ko ²², P. Kotko ²³, K. Krajczár ^{2,24}, K. Kutak ²⁵, M. Laine ²⁶, Y. Liu ²⁷, M.P. Lombardo ²⁸, M. Luzum ^{29,3}, C. Marquet ³⁰, S. Masciocchi ⁹, V. Okorokov ³¹, J.-F. Paquet ^{32,33}, H. Paukkunen ^{3,18,34}, E. Petreska ^{30,3}, T. Pierog ³⁵, M. Ploskon ³⁶, C. Ratti ³⁷, A.H. Rezaeian ³⁸, W. Riegler ², J. Rojo ³⁹, C. Roland ²⁴, A. Rossi ^{40,1}, G.P. Salam ², S. Sapeta ^{25,2}, R. Schicker ¹⁹, C. Schmidt ⁴¹, J. Stachel ¹⁹, J. Uphoff ²¹, A. van Hameren ²⁵, K. Watanabe ⁴², B.-W. Xiao ⁴², F. Yuan ³⁶, D. Zaslavsky ⁴², K. Zhou ^{21,15}, P. Zhuang ¹⁵

LIP & Collaborators (2017, 2018)

Future Colliders

- Physics opportunities for future accelerators;
 - Jet substructure to probe different QGP lifetimes

LIP & Collaborators (2019)

PbPb [0-10]%

PbPb [40-50]%

0.6

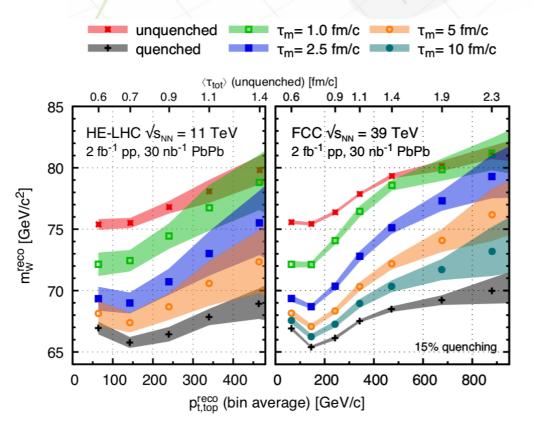
ArAr [0-10]9

 $1/N_2 dN_{JZ}/dx_{JZ}$ 0.8

& Rafael Orelhas (LIP Summer Internship 2018)

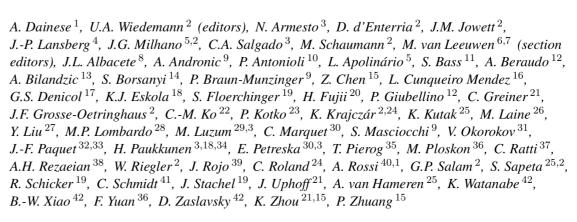
1.2

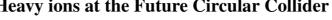
 $p_{\tau_{-}} > 10 \text{ GeV}, \, h_{1} \, l < 2.5$


1.6

 $p_{zz} > 60 \text{ GeV}, 70 \le m_z \le 110 \text{ GeV}$

 $R_{jet} = 0.3, p_{T_{iot}} > 30 \text{ GeV,h}_{\eta_{iot}} I < 1.6$


Probing the time structure of the quark-gluon plasma with top quarks


Liliana Apolinário, ^{1,2} José Guilherme Milhano, ^{1,2,3} Gavin P. Salam, ^{3,*} and Carlos A. Salgado⁴

LIP & Collaborators (2017, 2018)

Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams

Report from Working Group 5 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

Students @ Pheno

- ◆ If you want to do Jet Physics in the presence of a QGP:
 - Quantum Field Theory in a Hot and Dense medium;
 - Development of Monte Carlo event generators;
 - Design of novel experimental observables/physics analysis for heavy-ion collisions (present and future);

Students @ Pheno

- If you want to do Jet Physics in the presence of a QGP:
 - Quantum Field Theory in a Hot and Dense medium;
 - Development of Monte Carlo event generators;
 - Design of novel experimental observables/physics analysis for heavy-ion collisions (present and future);

Join us!:-)

liliana@lip.pt

gmilhano@lip.pt

Thank you!

Acknowledgements

