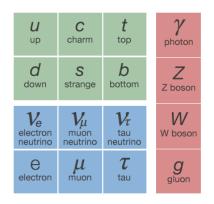
What many Higgses can do for you

Igor Ivanov

CFTP, Instituto Superior Técnico

4th Lisbon mini-school, Caparica, February 11th, 2019

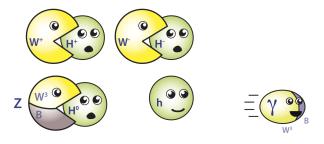
SM and beyond	NHDMs	Flavour puzzle	Cosmology	Conclusions



- 2 Multi-Higgs-doublet models
- 3 Attacking the flavour puzzle
- 4 Cosmological consequences

Igor Ivanov (CFTP, IST)

SQA


SM and beyond ●୦୦୦	NHDMs 0000000	Flavour puzzle	Cosmology	Conclusions
The Standard	l Model			

Igor Ivanov (CFTP, IST)

SM and beyond ○●○○	NHDMs 0000000	Flavour puzzle	Cosmology	Conclusions
The Standard	Model			

Brout-Englert-Higgs mechanism based on the Higgs doublet $\Phi \rightarrow$ regrouping the bosons:

 $W_1, W_2, W_3, B, \Phi \rightarrow W^{\pm}, Z, \gamma, h.$

Sar

SM and beyond ○○●○	NHDMs 0000000	Flavour puzzle	Cosmology 00000	Conclusions
The Standard	Model			

The Standard Model:

- minimalistic, fully predictive theory,
- extremely efficient in describing collider data.

But there are several observations which the SM

- cannot accommodate (DM, baryon asymmetry of the Universe)
- can describe but not explain (fermion masses, mixing, CP violation, neutrinos).

Sar

 SM and beyond
 NHDMs
 Flavour puzzle
 Cosmology
 Conclusions

 Looking beyond the Standard Model

There must exist physics Beyond the Standard Model!

Theorists have proposed \sim 1000 models of New Physics!

We just don't know which one corresponds to reality!

The main goal of the present-day experimental HEP is to find New Physics.

Igor Ivanov (CFTP, IST)

What many Higgses can do for you

Sac

SM and beyond	NHDMs	Flavour puzzle	Cosmology	Conclusions
	•000000			

Non-minimal Higgs sectors

Igor Ivanov (CFTP, IST)

Sar

SM and beyond	NHDMs ○●○○○○○	Flavour puzzle	Cosmology	Conclusions
Non-minima	al Higgs sec	tors		

Non-minimal Higgs sectors: a conservative approach to New Physics.

SM

Multi-Higgs models

4

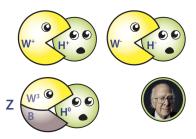
DQC

SM and beyond	NHDMs ○○●○○○○	Flavour puzzle	Cosmology 00000	Conclusions
Several Hig	os generatio	ns		

Simple idea

66

Higgses can come in generations \rightarrow *N*-Higgs-doublet models (NHDMs).


- T.D. Lee, 1973: 2HDM as a new source of CP-violation (CPV);
- Weinberg, 1976: 3HDM with natural flavour conservation and CPV;
- 1990's: supersymmetry requires at least two Higgs doublets;
- . . .
- Porto, Zee, 2008: "private" Higgs model, a separate Higgs doublet for each fermion flavour.

In total, $\mathcal{O}(10^4)$ papers over 40 years.

SQA

SM and beyond	NHDMs 000●000	Flavour puzzle	Cosmology	Conclusions
Counting Hi	ggses			

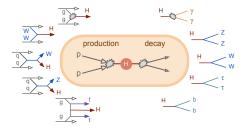
• SM: $\phi = (\phi^+, \phi^0)$; 4 real degrees of freedom.

3 bosons become W_L^+ , W_L^- , Z_L ; 1 Higgs boson remains.

SQC

SM and beyond	NHDMs 0000●00	Flavour puzzle	Cosmology	Conclusions
Counting Hi	ggses			

- 2HDM: ϕ_1, ϕ_2 ; 2 × 4 = 8 real degrees of freedom.
 - 3 bosons become W_L^+ , W_L^- , Z_L ; 5 Higgs bosons remains:
 - 3 neutral h, H, A; 2 charged: H^{\pm} .


Exciting phenomenology at colliders, see review Branco et al, arXiv:1106.0034 (\approx 1400 citations so far).

Sar

SM and beyond	NHDMs ○○○○○●○	Flavour puzzle	Cosmology	Conclusions
Higgs bosor	n discovery			

July 4th, 2012: Higgs searches \rightarrow Higgs exploration

LHC Run 1 (20 fb⁻¹) + early Run 2 (80 fb⁻¹) statistics:

- no other Higgs bosons detected,
- very SM-like couplings of the 125 GeV Higgs.

Sac

SM and beyond	NHDMs 000000●	Flavour puzzle	Cosmology	Conclusions
2HDM phenor	menology			

This is **not** a blow to multi-Higgs models:

• One Higgs can be very similar to SM, the other Higgses are almost hidden \rightarrow don't expect democracy among Higges!

It arises naturally in many multi-Higgs models (Higgs alignment).

- Strategy: search for hints of non-standard Higgs interactions:
 - flavour-violating decays (e.g. $h \rightarrow \mu e$);
 - invisible Higgs decays;
 - deviations in rare decays $(h \rightarrow Z\gamma, h \rightarrow \mu\mu, h \rightarrow \Upsilon\gamma, ...)$;
 - unusual *hh* production.

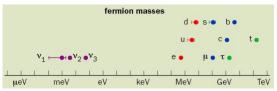
Sar

SM and beyond NHDMs Flavour puzzle Cosmology Conclusions

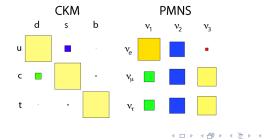
Attacking the flavour puzzle

Igor Ivanov (CFTP, IST)

What many Higgses can do for you


4th Lisbon mini-school 2019 12/22

Sar


ŀ

SM and beyond	NHDMs 0000000	Flavour puzzle ○●○○○○	Cosmology 00000	Conclusions
Flavour puzzl	e			

• highly hierarchical quark, lepton, and neutrino masses

• the patterns of the quark and neutrino mixing

Sar

SM and beyond	NHDMs 0000000	Flavour puzzle oo●ooo	Cosmology 00000	Conclusions
Flavour puzzle	2			

In the SM the poor single Higgs doublet does all the job:

 $\mathsf{\Gamma}_{ij} \; \big(\mathsf{right} \; \mathsf{quarks}_i \times \underbrace{\mathsf{Higgs}}_{v} \times \mathsf{left} \; \mathsf{quarks}_j \big) \,, \quad i, j = 1, 2, 3$

- masses to up-type quarks,
- masses to down-type quarks,
- mixing and CP violation for quarks.

But no resources left to explain anything...

Sar

N generations of Higgses can do a lot!

$$\sum_{a} \Gamma^{(a)}_{ij} \text{ (right quarks}_i \times \underbrace{\text{Higgs}_a}_{v_a} \times \text{ left quarks}_j)$$

- In general, Γ^(a)_{ij} are unconstrained complex matrices 3 × 3 → too much freedom, complete mess.
- Suppose there is flavour symmetry group G which acts on quarks and Higgses \rightarrow each $\Gamma_{ii}^{(a)}$ can be very simple, symmetry-constrained!
- Vacuum expectation values v_a break the flavour symmetry → relations among masses/mixing/CP-violation may remain.

SQA

Lots of activity 70-80's: guess G, guess representations, arrange for symmetry breaking \rightarrow deduce relations among masses/mixing/CP violation.

- permutation symmetry groups S_3 or S_4 : [Pakvasa, Sugawara, 1978, 1979, + Yamanaka, 1982] \rightarrow perfectly (for early 80's!) reproduced CKM;
- rephasing + permutations: Δ(54) which makes Γ^(a) very simple [Segre, Weldon, Weyers, 1979]: mass hierarchy may come from v₁ ≪ v₂ ≪ v₃.
- typical prediction for top mass: 20-40 GeV; decline of activity in 90's;
- renewed interest in last years with many strong results, see review [lvanov, arXiv:1702.03776].

JAC+

SM and beyond	NHDMs 0000000	Flavour puzzle ○○○○○●	Cosmology	Conclusions
CP violation	in NHDM			

• Spontaneous *CP*-violation [T.D.Lee, 1973, Branco, 1979]:

- lagrangian is *CP*-invariant, Γ's are real;
- the position is minimum, v_a , is complex;
- CKM becomes complex.

Recent resurrection of the idea: [Nebot, Botella, Branco, 2018].

- Geometric *CP*-violation [Branco, Gerard, Grimus, 1984]: very stable, rigid prediction for the CP-violating phase;
- Higgs exchanges as a new source of CP-violation [Weinberg, 1976];
- new form of *CP*-symmetry (CP4 3HDM) [Ivanov, Silva, 2016] with peculiar phenomenology.

JAC+

SM and beyond	NHDMs 0000000	Flavour puzzle ○○○○○●	Cosmology	Conclusions
CP violation	in NHDM			

- Spontaneous *CP*-violation [T.D.Lee, 1973, Branco, 1979]:
 - lagrangian is *CP*-invariant, Γ's are real;
 - the position is minimum, v_a , is complex;
 - CKM becomes complex.

Recent resurrection of the idea: [Nebot, Botella, Branco, 2018].

- Geometric *CP*-violation [Branco, Gerard, Grimus, 1984]: very stable, rigid prediction for the CP-violating phase;
- Higgs exchanges as a new source of *CP*-violation [Weinberg, 1976];
- new form of *CP*-symmetry (CP4 3HDM) [Ivanov, Silva, 2016] with peculiar phenomenology.

SQA

SM and beyond	NHDMs 0000000	Flavour puzzle ○○○○○●	Cosmology	Conclusions
CP violation	in NHDM			

- Spontaneous *CP*-violation [T.D.Lee, 1973, Branco, 1979]:
 - lagrangian is *CP*-invariant, Γ's are real;
 - the position is minimum, v_a , is complex;
 - CKM becomes complex.

Recent resurrection of the idea: [Nebot, Botella, Branco, 2018].

- Geometric *CP*-violation [Branco, Gerard, Grimus, 1984]: very stable, rigid prediction for the CP-violating phase;
- Higgs exchanges as a new source of *CP*-violation [Weinberg, 1976];
- new form of *CP*-symmetry (CP4 3HDM) [Ivanov, Silva, 2016] with peculiar phenomenology.

 SM and beyond
 NHDMs
 Flavour puzzle
 Cosmology
 Conclusions

 0000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000

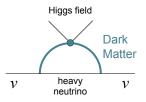
Cosmological consequences

Igor Ivanov (CFTP, IST)

Sar

17/22

э


SM and beyond	NHDMs 0000000	Flavour puzzle	Cosmology ○●○○○	Conclusions
Scalar dark m	natter			

Inert doublet model = 2HDM with new "parity" (\mathbb{Z}_2 -symmetry) [Deshpande, Ma, 1978; Barbieri et al, 2006, Lopez Honorez et al, 2006]:

- all known particles are \mathbb{Z}_2 -even; second Higgs doublet ϕ_2 is \mathbb{Z}_2 -odd;
- \mathbb{Z}_2 parity is conserved \rightarrow the lightest Higgs from ϕ_2 is automatically stable \rightarrow dark matter candidate!

Constraints from colliders, cosmology and DM searches \rightarrow a lot of interest.

Dark matter can even help give tiny masses to neutrinos \rightarrow scotogenic model [Ma, 2006].

SQA

SM and beyond	NHDMs 0000000	Flavour puzzle	Cosmology ○○●○○	Conclusions
Higgs portal	models			

Scalar DM arises in many other models beyond Higgs doublets.

Higgs portal framework: Higgs doublet ϕ and singlet scalar field *S* connect the (potentially rich) dark sector with the SM [Patt, Wilczek, 2006]:

 $\mathcal{L}(\mathsf{SM}) + \lambda_{SM-D}(\phi^{\dagger}\phi)(S^{\dagger}S) + \mathcal{L}(\mathsf{dark}).$

Testable through collider and astroparticle measurements.

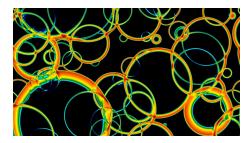
Sar

SM and beyond	NHDMs 0000000	Flavour puzzle	Cosmology ○○○●○	Conclusions
Cosmological	phase tran	sition		

Baryon asymmetry requires a strong first-order thermal electroweak phase transition in early Universe.

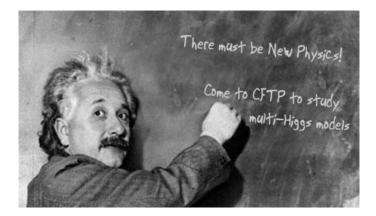
$$\frac{v(T_c)}{T_c}\gtrsim 1.$$

 ϕ_c


But it does not work in the SM!

We need to "additionally bend" the Higgs potential!

Sac


SM and beyond	NHDMs 0000000	Flavour puzzle	Cosmology ○○○○●	Conclusions
Cosmological	phase trans	ition		

- Extra Higgses can produce strong phase transition!
- 2HDMs: from early works [Turok, Zadrozny, 1992] to the recent detailed studies [Dorsch, Huber, No, 2013].
- Several minima \rightarrow a sequence of strong phase transitions.
- Can be probed with future GW observatories [Caprini et al, 1512.06239], a key item of the LISA scientific program.

Sar

SM and beyond	NHDMs 0000000	Flavour puzzle	Cosmology	Conclusions
Conclusions				

Igor Ivanov (CFTP, IST)

• • = • • = •

4

Э

990