Understanding the Universe with Neutrinos and Astroparticles

J. Maneira

4th Lisbon miniSchool on Particle and Astroparticle Physics

The two frontiers

 Need to understand the "infinitely small" to understand the "infinitely large"

What Physics do we do?

Astroparticles at LIP

Particle	Expt.	Discover New Particle Physics	Particles as probes in Astrophysics or Cosmology
Charged cosmic rays	Auger AMS	Hadronic interactions at high energies Dark Matter search	Sources of HECR Multi-messenger Astrophysics Anti-matter search Solar Physics
Photons	LATTES	Dark Matter search	Multi-messenger Astrophysics
Neutrinos	SNO+ DUNE	Oscillations and mass Majorana neutrinos CP violation and leptogenesis Nucleon decay search	Sun, Earth and Supernova Physics Matter/antimatter in early Universe

Thanks to: P. Assis, F. Barão, N. Barros, R. Conceição

Where we do it?

International Space Station

AMS

Pampa Argentina

Auger

Atacama, Chile (?)

LATTES

Underground in Canada

Fermilab to South Dakota, passing by CERN...

DUNE

Outline

- Introduction 1: Multi-Messenger Astronomy
 - AMS
 - Auger
 - LATTES
- Introduction 2: Neutrino Physics
 - SNO+
 - DUNE

Ultra High Energy Cosmic Rays

Cosmic ray energy spectrum

Ruben Conceição

Multi-Messenger Astronomy

Neutrinos

Complementarity

protons are deflected by the galactic magnetic fields

gammas travel in straight lines but can be absorbed in the way

neutrinos travel in straight lines but are very difficult to detect

"Multi-messenger observation of a Binary Neutron Star Merger"

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20

- Joint observation of GW and EM signals by many collaborations
 - different wavelengths, different physics
 - much richer understanding of the astrophysical phenomena
- Birth of a new era!

Photon + neutrino

Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

The IceCube Collaboration, *Fermi*-LAT, MAGIC, *AGILE*, ASAS-SN, HAWC, H.E.S.S, *INTEGRAL*, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, *Swift/NuSTAR*, VERITAS, and VLA/17B-403 teams⁺[↑]

77.0

76.5

Science 361 (2018) no.6398

Observation occurred on September, 22nd 2017

5.72 6.5 5:68 5.64 77,41 6.0 TXS 0506+056 5.5 IceCube (50%) IceCube (90%) 5.0 MAGIC (95%) PKS 0502+049 0 Fermi (95%) TXS 0506+056

77.5

Right Ascension [*]

78.0

78.5

Declination [°]

Alpha Magnetic Spectrometer

Installed on the International Space Station (ISS) in May of 2011

Collected more than 112,500,000,000 events up to this day, at a rate of about 45 million events per day

Most of primary cosmic rays crossing AMS are protons

AMS detector

Upper TOF

Lower TOF

Ring-Imaging Cherenkov Detector

Transition Radiation Detector

Sillicon Tracker

Electromagnetic Calorimeter

AMS results

electron/positron vs proton/antiproton separation

Z>1 fluxes

Primary (He, C, O) and secondary nuclei (Li, Be, B)

Positrons and antiprotons

AMS p/p results and modeling

Solar modulation

EVIDENCE OF A TIME DELAY

Pierre Auger Observatory

Fluorescence detector (FD) for scintillation light

mary Cosmic Ra

000 & Kalhorata 000 m (1912-14

GZK effect

- Cosmic ray interaction with Cosmic Microwave Background (CMB)
 - Greisen, Zatsepin, Kuz'min (1966)
- Cross-section increases at $E_{CM}{>}\ m_{\Delta}{=}\ 1.23$ GeV, or $E_{p}\sim 10^{19.5}\ eV$

Energy loss vs. distance

(Suppression could still be due to the source exhaustion)

28

Observation of dipolar anisotropy

- Harmonic analysis shows a dipole for energies above 8 EeV
 - * Significance: 5.2 σ (post-trial ; with penalization for energy bins exploration)
- Evidence for UHECRs origin outside the galaxy

Ruben Conceição

Measurement (!) of cross-section

Particle Physics at the highest energies

Muon content in air showers

♦ Muons → Assess Hadronic interaction models (HIM) Phys.Rev. D91 (2015) 3, 032003

 Combination of the R_µ (number of muons) with X_{max} shows tension between data and all hadronic interaction models

Ruben Conceição

The future: AugerPrime

- * Primary cosmic
 Ray Identification through Muons and Electrons"
- Two complementary detectors:
 - Scintillator on top of the tank: signal dominated by e.m. component
 - ♦ WCD sensitive to e.m. + muon

♦The goal:

- Enhance primary identification
- Improve shower description
- Reduce systematic uncertainties

Engineering array taking data

35th ICRC, PoS (2017) 383

Ruben Conceição

Measuring Muons : MARTA

A dedicated muon detector: An array of particle detector installed beneath the tanks.

Cost-effective.

Water tank
Precast structure

RPCs

Led by LIP

LATTES

(Very) High Energy Gamma Rays

Astrophysical gamma rays

- Energy region of interest from GeVs to hundreds TeVs
- Scientific interest:

...

- Key to understand the acceleration mechanism of cosmic rays in our galaxy
- Violent astrophysical phenomena: pulsars; black holes,...
- Galactic magnetic fields
- Photon radiation fields in the Universe
- Indirect search of dark matter (WIMP interactions)
- Test fundamental properties of quantum gravity

How to detect?

Arrays at high-altitude = large field of view + large duty cycle + low energy

LATTES

Complementary to the powerful Cherenkov Telescope Array project

The concept: a hybrid detector

RPCs : time and spatial resolution WCDs: e.m. energy, g/h discrimination and trigger

ruben@lip.pt

LATTES @ ALMA site Large Array Telescope for Tracking Energetic Sources

- Joint Brazil / Italy / Portugal initiative
- Interest from Czech group
- ♦ Possible site:
 - Atacama Large Millimeter Array site
 - Chajnantor plateau
 - 5200 meters altitude in north Chile
 - Good position to survey the Galactic Center

LATTES array

LATTES sensitivity

Astropart. Phys. 99 (2018) 34-42

LATTES concept **can cover the energy gap** between satellite borne and ground base experiments

ruben@lip.pt

Neutrinos

For every proton/neutron/electron the Universe contains a billion of neutrinos from the Big Bang

What do we know about neutrinos?

- Have no charge do not participate in electromagnetism.
 - Could be their own antiparticles.
- Come in three flavors
- Are very light
- Interact very weakly
- Neutrinos (v) are always lefthanded and anti-neutrinos (v) are always right-handed

Neutrino oscillations

 Requirements: Massive neutrinos & different masses

 weak Hamiltonian
 free Hamiltonian
(mass eigenstates)
 weak Hamiltonian

 E_v v_{μ} $e^{\sin^2 2\theta} \cdot \sin^2 \left(\frac{\Delta m^2 \cdot L}{4E_v} \right)$ v_{μ}
 E_v v_{μ} $e^{\sin^2 2\theta} \cdot \sin^2 \left(\frac{\Delta m^2 \cdot L}{4E_v} \right)$ v_{μ}

 L L v_{μ} v_{μ}

What have we learned in the last ~20 years

What haven't we learned yet

- Is there CP violation in the lepton sector?
- Which mass hierarchy is correct?
- What are the precise values of the neutrino mixing parameters?

- What is the absolute mass scale?
- Are neutrinos Majorana or Dirac particles?

DUNE

SNO+

Neutrino-less double beta decay

- Only happens if neutrinos are of Majorana type
- Half-life depends on the neutrino mass

 $\frac{1}{T_{1/2}^{0\nu}} = \frac{G_{0\nu} |\mathcal{M}_{\nu}|^2}{|\mathcal{M}_{ee}|^2} \frac{|m_{ee}^{\nu}|^2}{|m_{e}|^2}$

Particle Physics term Effective Majorana mass Depends on masses m1, m2, m3 also on neutrino mixing parameters

Nuclear Physics terms

 $m_{\rm ee}^{\nu} = m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{2i\alpha_2} + m_3 s_{13}^2 e^{2i(\alpha_3 + \delta)}$

Searching for NLDBD

- Method
 - Search for a peak in the energy spectrum (sum of the two electrons)
 - Acquire data for a long time and with high quantities of isotope

- Choice of isotope
 - Natural abundance, energy
- Low backgrounds
 - Underground location
 - Low radioactivity

50

Water phase data!

Data-taking!

Muon candidate grazing the detector

New results!

Limits on invisible nucleon decay World-leading on proton: $T(p \rightarrow inv.) \ge 3.6 \ge 10^{29} yr (90\% CL)$ ⁸B solar neutrinos. Consistent with SK and SNO. Lowest backgrounds ever > 6 MeV

Anti-neutrinos

- from nuclear reactors and natural Earth radioactivity
- improve oscillation measurements
- constrain Earth heat models

Double Beta Decay Sensitivity

$T_{1/2} \ge 2 \ge 10^{26} \text{ yr} (90\% \text{ CL}, 5 \text{ yr})$ $m_{\beta\beta} \approx 40 - 90 \text{ meV}$

- Tellurium phase: 2020
- After 5 years, expect best ¹³⁰Te DBD halflife limit, probing top of inverted hierarchy neutrino masses
 - Upgrade: x5 bettering, 5
- Complementary to searches with ¹³⁶Xe and ⁷⁶Ge

DUNE

The big bang produced equal amounts of matter and antimatter

For some reason antimatter was annihilated. Why ? Neutrinos may have the answer: **CP violation**

Oscillation modes in DUNE

E_v~ 2.6 GeV

Fermilab

LBNF= Long Baseline Neutrino Facility

EUTRINO EXPERIMENT

39

1300 Km away from Fermilab

Four 10 Kton fiducial mass (17 Kton total) Liquid Argon TPCs

Expected event rates (without oscillations) at 10 kpc:

Channel	Events "Livermore" model	Events "GKVM" model
$\nu_e + {}^{40} \operatorname{Ar} \to e^- + {}^{40} \operatorname{K}^*$	2720	3350
$\overline{\nu}_e + {}^{40} \operatorname{Ar} \to e^+ + {}^{40} \operatorname{Cl}^*$	230	160
$\nu_x + e^- \rightarrow \nu_x + e^-$	350	260
Total	3300	3770

Supernovae

99% of the energy in a supernova explosion is carried away by neutrinos

How Does a LArTPC Work?

CERNCOURIER International Inte

Home | About | News | Features | Community | Viewpoint | Reviews | Archive | Past Issues | Jobs

FEATURE ProtoDUNE revealed 15 February 2017

CERN makes rapid progress toward prototype DUNE detectors.

Gold Suppliers

Latest Articles

Meet the Extremely Brilliant Source Cosmic research poles apart The tale of a billion-trillion protons Viewpoint: Fixing gender in theory The deepest clean lab in the world Doubly-strange baryon observed in Japan Inside Story: On the Courier's new future

protoDUNE data !

2 EM showers and a pion interaction with 4 outcoming particles

pion and proton beam events mixed with cosmics

7 GeV beam proton

7 m

Outlook

- Neutrino and astroparticle experiments have a very wide range of:
 - Energy ranges and techniques
 - Scintillator/low energy, Liquid Argon
 - Trackers/spectrometers/calorimeters (in space!!)
 - RPC, water Cherenkov tanks
 - Particle Physics discovery potential
 - hadronic interactions, dark matter, leptogenesis
 - neutrino oscillations, mass, Majorana
 - Capabilities for Astrophysics
 - Multi-messenger studies of sources and propagation
 - Sun, Earth, Supernova

Neutrino beam / oscillations

Oscillation probability for different values of δ_{CP}

Yellow light becomes green

