

#### **Reinhild Yvonne Peters**

#### The University of Manchester





European Research Council Established by the European Commission





Introduction

Colour Flow

Angular Distributions

• The Top and The Higgs

Summary

# Introduction



### **The Top Quark**

- Heaviest known elementary particle: m<sub>t</sub>~173GeV
- Standard Model:
  - Single or pair production
  - Electric charge +2/3 e
  - Short lifetime 0.5x10<sup>-24</sup>s
    - Bare quark no hadronisation
  - ~100% decay into Wb
  - Large coupling to SM Higgs boson





#### **Top: From Discovery...**

Discovered in 1995 by CDF and DØ at Fermilab (with few events)





#### ...to Precision

Discovered in 1995 by CDF and DØ at Fermilab (with few events)



**Yvonne Peters** 



#### **Top Studies: Overview**



#### 13.12.2018



#### **Top Studies: Overview**



#### 13.12.2018

#### **Top Quark Pair Production**



MANCHESTER

1824

#### **Top Quark Pair Production**



13.12.2018

MANCHESTER

**Yvonne Peters** 



#### Final States in tt

 $t\bar{t} \rightarrow W^+bW^-\bar{b}$  : Final states are classified according to W decay





### Final States in tt

 $t\bar{t} \rightarrow W^+bW^-\bar{b}$  : Final states are classified according to W decay

B(t→W<sup>+</sup>b)=100%

**Top Pair Branching Fractions** 

all-hadronic: ≥6 jets (2 b-jets)

dilepton: 2 isolated leptons; High missing E<sub>T</sub> from neutrinos; 2 b-jets





### **Identification of b-Jets**

- Important tool to increase tt purity
- b-hadron: travels some millimeters before it decays
- Neural Network (MV1) combines properties of displaced tracks and displaced vertices





#### ATLAS-PHYS-PUB-2015-022

# Top Events as a Laboratory

#### MANCHESTER 1824

#### Introduction to Colour Connection and Hadronization

- Quarks carry QCD color charge
  - But only colour singlets can be observed
    - For example W, Z, or bound states like hadrons
- Partons carrying color are color connected to partons with anti-colour





#### **Color Flow between Jets**

- Jets carry color, and are thus color connected to each other
  - Pairing of connection depends on nature of decaying particles



- Particles created during hadronization should be concentrated along angular region spanned by the color connected partons
  - Transverse jet profiles should not be round
  - Shape influenced by direction of color flow!



#### **Color Flow between Jets**

- Jets carry color, and are thus color connected to each other
  - Pairing of connection depends on nature of decaying particles



- Particles created during hadronization should be concentrated along angular region spanned by the color connected partons
  - Transverse jet profiles should not be round
  - Shape influenced by direction of color flow!



#### **Color Flow Observable**

Construct a local observable, constructed from particles within a chosen jet cone: Jet pull  $\Delta \phi = \phi - \phi_{J_1}$ 

- Pick a pair of jets in the event
- Build vectorial sum of jet components:

$$\vec{p} = \sum_{i} \frac{E_T^i |r_i|}{E_T^{jet}} \vec{r}_i$$

- *r*<sub>i</sub>: position of jet component
   i relative to center of jet
- E<sub>τ</sub><sup>i</sup>: transverse energy of component i
- $E_{T}^{Jet}$ : transverse energy of jet



Gallicchio, Schwartz, PRL 105, 022001 (2010)



#### **Color Flow Observable**

Construct a local observable, constructed from particles within a chosen jet cone: Jet pull  $\Delta \phi = \phi = \phi$ 

- Pick a pair of jets in the event
- Build vectorial sum of jet components:

$$\vec{p} = \sum_{i} \frac{p_T^i |r_i|}{p_T^{jet}} \vec{r}_i$$

- $\vec{r}_i$ : position of jet component i relative to center of jet
- p<sub>T</sub><sup>i</sup>: transverse momentum of component i
- $p_{\tau}^{\text{Jet}}$ : transverse momentum of jet



Gallicchio, Schwartz, PRL 105, 022001 (2010)



### **Colour Flow in Top**

- Top events as laboratory to test new tools
- Jets carry color, and are thus color connected to each other
  - Pairing of connection depends on nature of decaying particles





### **Colour Flow in Top**

Consider 4 variables in semileptonic tt events (>1 b-tagged jet)

- Two non-b-tagged jets:
  - Relative jet pull angles
  - Jet pull magnitude



- Two b-tagged jets
  - Relative jet pull angle







- Correct distributions for detector effects
- 13 TeV analysis: use only track-jets
  - Have shown to have better resolution than calorimeter jets in 8 TeV analysis PLB 750, 475-493 (2015)



Eur. Phys. J. C 78 (2018) 847



Correction to stable particle-level (iterative Bayesian unfolding)



- Colour-flipped model disfavoured by the data (for this distribution x<sup>2</sup>/NDF: 45.3/3; SM Powheg+Pythia8: 17.1/3)
- MC modeling has room for improvement

Eur. Phys. J. C 78 (2018) 847

# Angular Distributions



#### **Spin Correlations**

- Top quarks decay before fragmentation
  - Spin information is preserved
- Hadron colliders: top quarks produced un-polarized, but
  - New physics (NP) could induce polarization
    - e. g. NP causing forward-backward t $\bar{t}$  asymmetry  $\rightarrow$  more left-handed tops
  - Correlation between top and antitop spin can be extracted





#### **Spin Correlations**

- Measured spin correlation can change
  - Due to different decay



### **Analysis Strategy**

- Highest spin analysing power: leptons from top decay  $\rightarrow$  use dileptonic tt events (eµ)
  - Very clean samples
- Use ∆φ between both leptons
   → no kinematic event reconstruction required



- Full tt event reconstruction for  $m_{tt}$   $\rightarrow$  use of neutrino weighting for full reconstruction
  - Uses known top and W boson mass as constraints to explore missing neutrino information



### **Analysis Strategy**

- Unfolded differential measurements:
  - Parton-level
    - Inclusive and in bins of m<sub>tr</sub>



ATLAS-CONF-2018-027

#### Particle level

Inclusive and in bins of  $m_{_{t\bar{t}}}$ 





• Unfolded distributions compared to different MC predictions



Data shows shallower slope than prediction

ATLAS-CONF-2018-027

MANCHESTER



#### **Template fit**

Fitting spin and no-spin hypotheses to parton-level distributions



ATLAS-CONF-2018-027



### **Template fit**

#### Fitting spin and no-spin hypotheses to parton-level distributions



Spin correlations higher than SM prediction by 3.7σ
 (3.2σ including theory uncertainty)

ATLAS-CONF-2018-027

### **Spin: Quo Vadis?**

#### Many developments going on

 Higher-Order calculations? (figure from Rene Poncelet's talk at TopLHCWG meeting 21.11.)



New Physics?

Both communities working on understanding effect  $\rightarrow$  need to measure more variables (e.g. full spin density matrix)  $1 \qquad d^2\sigma \qquad 1$  (1) (c. D)

$$\frac{1}{\sigma} \frac{a}{d\cos\theta_1 d\cos\theta_2} = \frac{1}{4} (1 \pm (\alpha P)_1 \cos\theta_1 \pm (\alpha P)_2 \cos\theta_2 - C\cos\theta_1 \cos\theta_2)$$

 $\alpha_i$ : spin analyzing power of decay product i;  $\theta_i$ : direction of daughter wrt. chosen axis

- P: polarization
- C: spin correlation

MANCHESTER

# The Top and The Higgs

### The Top and The Higgs

#### Top and Higgs: Heaviest known elementary fermion and boson!

- Top-Higgs Yukawa coupling: predicted to be ~1 in the SM
   → special role of top quark in electroweak symmetry breaking?
   → window to new physics?
   → metastable universe?
- Measuring top-Higgs Yukawa coupling directly: important! (indirectly: in H→yy and gg→H)
  - Main channel: ttH



MANCHESTER



### The Top and The Higgs

- This year: First observation of ttH! (first by CMS, then ATLAS; similar strategies, concentrating on ATLAS here)
  - Combination of multiple channels:
    - Higgs decay to  $b\bar{b}$ ,  $WW^*$ ,  $\tau^+\tau^-$ ,  $\gamma\gamma$ ,  $ZZ^*$
    - Hadronic and/or leptonic top decays used





### **Diphoton Channel**

- Define two regions: hadronic top decays or events with at least one charged lepton
  - m : has to be between 105 and 160GeV







- Use events with at least 4 isolated charged leptons
  - Two regions: hadronic (both tops decay hadronically) and leptonic (at least one top decays leptonically)
  - BDT used on hadronic region





#### **Multilepton Channel**

- Includes  $H \rightarrow WW$  (&ZZ) and  $H \rightarrow \tau \tau$  decays
- Many channels considered
  - Some use BDTs





# $H \rightarrow b\bar{b}$ Channel

- Semileptonic and dileptonic channels considered
  - Separation in many different control and signal regions
- Very challenging analysis
  - Modeling of background ttbb





#### 13.12.2018

MANCHESTER



#### Semileptonic

#### BDTs used enhancing significance

- Reconstruction of event done with "reconstruction BDT" → access to variables using full events
- Fits including control regions
   → improves control over backgrounds







#### Dileptonic

#### Similar strategy as in semileptonic channel

 Reconstruction of full event information more challenging due to two neutrinos







Results already dominated by systematic uncertainties
 → background modeling of ttbb a main factor



MANCHESTER



#### Combination

- Combination of all channels: Observation of ttH!
  - Observed significance of 5.8 $\sigma$





#### **Summary**

- Top Quark Physics: Probing the heaviest known elementary particle!
  - Jet pull: accessing colour-flow information between jets  $\rightarrow$  information on QCD colour-nature of mother particle
  - Precision measurement of spin correlations
    - probing the full top production and decay chain ever more precise
  - Top-Higgs: observation of ttH

     → new era of exploring the connection
     between heaviest elementary particles
- Everything compatible with SM so far
- Tops were, are and stay awesome → much to learn about the SM and beyond



# BACKUP



#### FBU

- FBU principle: apply Bayes theorem and give posterior probability for different possible spectra
- Elements needed:
  - input:  $\Delta |y|$  distribution in background subtracted data
  - efficiency and response matrix taken from the signal sample (Powheg)
  - output: posterior distribution for the asymmetry
- We take the mean as central value and the smallest interval covering 68% of the integral as the uncertainty.





- Define "pseudo-tops" on particle level
  - In fiducial region
  - Easy to reproduce for theorists!
- Pseudo-top:
  - Use particles with mean lifetime > 3\*10<sup>-11</sup>s



- Leptons: use "dressed lepton": leptons are used together with photons in their vicinity
- Jets: anti-k<sub>T</sub> with R=0.4 applied on stable particles (not leptons or neutrinos)
  - Presence of b-hadron with  $p_{\tau}$ >5GeV: jet is taken as a b-jet



I+jets channel: selection



Exactly 1 lepton (e or  $\mu$ ) e:  $p_{\tau}>25$ GeV,  $|\eta|<2.47$  & !(1.37< $|\eta|<1.52$ )  $\mu$ :  $p_{\tau}>25$ GeV,  $|\eta|<2.5$ 

Missing  $p_{T}$  for neutrino ( $\not E_{T}$ ): >30GeV

$$\geq$$
4 jets with p<sub>T</sub>>25GeV;  $|\eta|$ <2.5

≥2 jets b-tagged





#### Leptonic pseudo-top:

- construct leptonically decaying W from lepton and  $E_{\!\tau}^{\rm miss}$ 

- b-jet with smallest  $\Delta R$  to lepton





#### Leptonic pseudo-top:

- construct leptonically decaying W from lepton and  $E_{\!\tau}^{\rm miss}$
- b-jet with smallest  $\Delta R$  to lepton

#### Hadronic pseudo-top:

- construct W from remaining two highest- $p_{\tau}$  jets
- use remaining b-jet



#### **Colour Flow: Systematics**

| $\Delta \theta_P \left( j_1^W, j_2^W \right) \left[ \% \right]$ | $	heta_P\left(j_1^W, j_2^W ight)$ |             |             |            |
|-----------------------------------------------------------------|-----------------------------------|-------------|-------------|------------|
|                                                                 | 0.0 - 0.21                        | 0.21 - 0.48 | 0.48 - 0.78 | 0.78 - 1.0 |
| Hadronisation                                                   | 0.63                              | 0.22        | 0.27        | 0.09       |
| Generator                                                       | 0.37                              | 0.24        | 0.50        | 0.06       |
| Colour Reconnection                                             | 0.11                              | 0.26        | 0.03        | 0.53       |
| b-Tagging                                                       | 0.35                              | 0.12        | 0.20        | 0.31       |
| Non-Closure                                                     | 0.25                              | 0.07        | 0.08        | 0.30       |
| ISR / FSR                                                       | 0.32                              | 0.12        | 0.15        | 0.01       |
| Other                                                           | 0.25                              | 0.20        | 0.11        | 0.18       |
| $\operatorname{JER}$                                            | 0.12                              | 0.13        | 0.21        | 0.03       |
| $\mathbf{JES}$                                                  | 0.13                              | 0.06        | 0.13        | 0.07       |
| Tracks                                                          | 0.09                              | 0.04        | 0.05        | 0.07       |
| Syst.                                                           | 0.97                              | 0.52        | 0.68        | 0.72       |
| Stat.                                                           | 0.22                              | 0.18        | 0.17        | 0.26       |
| Total                                                           | 0.99                              | 0.55        | 0.71        | 0.76       |