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Introduction

• Hadron spectroscopy aims at a better understanding of low-energy
QCD, particularly the confinement and strong-decay mechanisms.

• Since most hadrons are resonances, many of which very broad, it is
mandatory that experimental and theoretical approaches describe
the same objects.

• According to principles from quantum field theory, resonance pole
positions are unique, contrary to e.g. line shapes, which depend
on the specific processes to produce resonances. This is the basis
of the PDG tables.

• Nevertheless, experimental analyses of scattering and production
data still employ Breit-Wigner (BW) or related parametrisations,
which generally do not respect S-matrix unitarity and analyticity.

• Even modern lattice simulations now impose single- or even mul-
tichannel unitarity when describing meson resonances.

•Unitarised quark models and others that take dynamical effects
of strong decay into account can lead to huge mass shifts when
compared to predictions from static quark models (see next slide).
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of several X structures as bona-fide resonances is any-
thing but undisputed. In a recent lattice calcula-
tion [9], with many two-meson interpolating fields in-
cluded, no evidence was found of isovector hidden-charm
tetraquark states up to 4.2 GeV. Moreover, several au-
thors [10–14] interpret charged hidden-charm or hidden-
bottom signals rather as non-resonant cusp-like struc-
tures, resulting from kinematical triangle singularities in
intermediate-state diagrams. On the other hand, even
when four-quark states are predicted in model calcula-
tions, these are often described as (quasi-)bound states
of two mesons [15, 16], with binding due to t-channel me-
son exchange instead of colour forces among two quarks
and two antiquarks. Finally, there are also models sug-
gesting that the observed charged hidden-charm and/or
hidden-bottom peaks may be highly excited Ds (cs̄)
states [17, 18] or light-quark axial-vectors [19].

Now, if tetraquarks nonetheless exist in nature as
genuine q2q̄2 bound states or resonances, the question
remains how to describe them in a realistic way, besides
resorting to the lattice. This brings us inexorably to the
issue of mass shifts from unitarisation, sometimes called
“unquenching” [20], which we shall discuss in the next
section. But let us first quote the warning of Jaffe him-
self [1] about describing the light scalar mesons as stable
tetraquarks:

“First, we are confronted with mesons whose
width is a substantial fraction of their mass.
A calculation of their masses which ignores
decay processes (as does ours) must not be
taken too literally. We should not expect the
accuracy we demanded in our treatment of
QQ̄ mesons and Q3 baryons.”

2 Unquenching the quark model

A fundamental difference between strong interactions
and e.g. electromagnetism is that in the former case mass
splittings and decay widths can be of similar magnitude.
Picking just one typical example from the PDG [3] Meson
Summary Table, we see that the mass difference between
the tensor meson f ′2(1525) and its first radial excitation
f2(1950) is about 420 MeV, while the full width of the
latter resonance is (472±18) MeV. This has tremendous
implications for spectroscopy, as was recognised almost
four decades ago by the Cornell [21], Helsinki [22], and
Nijmegen [23] hadronic-physics groups. Namely, most
mesons/baryons are not merely bound qq̄/qqq states,
but rather resonances in meson-meson or meson-baryon
scattering, respectively. Now, arguments based on S-
matrix analyticity imply that imaginary parts of reso-
nance poles are in principle of the same order as the cor-
responding real shifts with respect to the corresponding
bound states from quark confinement only. This may

give rise to huge distortions of hadron spectra as pre-
dicted by the SQM. To make life worse, relatively stable
hadrons, with widths of roughly 1 MeV or even less, can
still be subject to real mass shifts at least two orders
of magnitude larger, due to virtual decay. A famous
example is the enigmatic scalar charmed-strange meson
D⋆

s0(2317) [3], predicted to be 170–180 MeV heavier by
the SQM, but ending up at a much lower mass owing
to the closed yet strongly coupling S-wave DK decay
channel [24]. The latter model result was recently con-
firmed on the lattice [25], thus enfeebling claims [26] of
a tetraquark interpretation of this meson.

In order to illustrate the possible effects of unquench-
ing on meson spectra in general, we collect in Table 1
several model calculations of mass shifts owing to strong
decay. Note that not all of these approaches amount
to full-fledged S-matrix unitarisations of the SQM, in
fact only those in Refs. [21, 23, 28, 29, 34, 35] (for fur-
ther details, see Ref. [20]). But even among the latter
there can be sizable differences, as we can see in Ta-
ble 1 by comparing the predictions of Refs. [21] and [23]
for charmonium. These disagreements not only origi-
nate in different confinement forces, but also in the em-
ployed decay mechanisms, which are in their turn influ-
enced by the nodal structure of the qq̄ wave functions.
Nevertheless, Table 1 shows potentially huge mass shifts,
some of which are even larger than typical radial spacings
in meson spectra. Also note that S-matrix calculations
generally produce complex shifts, whenever at least one
decay channel is open. Particularly interesting in this
respect is the case of the charmed-light axial-vector me-
son D1(2430), whose imaginary mass shift in Ref. [35]
came out an order of magnitude larger than its real shift,
with the corresponding resonance pole position being in
good agreement with experiment [3]. Note that this is a
highly non-perturbative effect and not a consequence of
the usual perturbative calculation of the width.

Table 1. Negative real mass shifts from unquench-
ing. Abbreviations: P,V,S=pseudoscalar, vector,
scalar mesons, respectively; q=light quark. See
text and Ref. [20] for further details.

Refs. mesons −∆M/MeV

[21] charmonium 48–180

[22, 27] light P , V 530–780, 320–500

[23, 28] qq̄, cq̄, cs̄, cc̄, bb̄; P,V ≈ 30–350

[29] σ, κ, f0(980), a0(980) 510–830

[29] standard S (1.3–1.5 GeV) ∼ 0

[30] ρ(770), φ(1020) 328, 94

[24] D⋆
s0(2317), D

⋆
0(2400) 260, 410

[31] D⋆
s0(2317), D

⋆
s(2632) 173, 51

[32] charmonium 165–228

[33] charmonium 416–521

[34] X(3872) ≈100

[35] cq̄, cs̄; JP =1+ 4–13, 5–93
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Resonances: Breit-Wigner (BW) approximation:
Ampl = C

E−MBW+iΓBW/2
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One channel scattering

◮ S(k) = D(−k)
D(k) = e2iδ , |S(k)| = 1

◮ D(k) = (k − kj )

◮ D(−k) = (−k − kj )

◮ But |S(k)| 6= 1 so IIIIIIII
IIIIIIIIII

IIIIIIII
IIIIIIIIII
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One channel scattering

◮ S(k) = D(−k)
D(k) = e2iδ , |S(k)| = 1

◮ D(k) = (k − kj )

◮ D(−k) = (−k − kj )

◮ But |S(k)| 6= 1 so
◮ D(k) = (k − kj )(k + k∗

j )

◮ D(−k) = (−k − kj )(−k + k∗
j )

◮ then |S(k)| = 1
◮ and δ = (−α− β + γ + ω)/2
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Complex momentum and energy space frame

E = 2
√
(±k)2 + m2
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Pole and mass of a resonance

◮ Let’s imagine good fit of an amplitude to the data —> mass MBW at δ = 90o

◮ Amplitude ABW has a single pole at k = a − ib then δ = ArcTan( b
k−a ) and

MBW = 2
√

a2 + m2 but then |S| 6= 1
◮ Amplitude AR has two symmetric poles at k = c − id and k = −c − id

then |S| = 1, δ = ArcTan( 2dk
k2−c2−d2 ) and MBW 6= 2

√
c2 + m2

Let’s check it for ρ(770):
MBW = 775.26 ± 0.25 MeV (PDG’2016),
Γ = 149.1 ± 0.8 MeV (PDG’2016),
c < a by ≈ 7 MeV

Left line:
from fit to the data ≡ for ABW with
single pole —> a = MBW

Right line:
for c = MBW for unitary ABW with



ρ(770) pole mass vs. Breit-Wigner mass obeying unitarity

kpole = c − id (and −c − id) (1)

MBW : tan δ =
2dk

c2 + d2 − k2
=∞ ⇒ kBW =

√
c2 + d2 (2)

M2
BW = 2

√
c2 + d2 + m2 (3)

Epole = 2
√

k2
BW + m2 = 2

√
c2 − d2 + m2 − 2icd (4)

M2
BW + Re(E 2

pole) = 8(c2 + m2) (5)

M2
BW − Re(E 2

pole) = 8d2 (6)

Im(E 2
pole) = −8cd (7)

Epole = Mpole − iΓ/2 ⇒ E 2
pole = M2

pole − Γ2/4− iΓMpole (8)

Im(E 2
pole) = −ΓMpole = −8cd (9)

From Eqs. (5), (6), (9) we get after some trivial algebra

Mpole =

√√
(M2

BW − 4m2)2 − 4m2Γ2 + 4m2 − Γ2

4
(10)



Example: ρ0(770)→ π+π−

PDG:

Mρ0 = 775.26 MeV, Γρ0 = 147.8 MeV, mπ± = 139.57 MeV

Substitution in Eq. (10) gives Mpole = 770.67 MeV

• So even for a completely unitary description of a moderately
broad single-channel resonance, BW mass and pole mass dif-
fer by almost 5 MeV.

• When a simple, non-unitary BW parametrisation is used to
fit the P-wave ππ phase shifts, this difference can become
as large as 10 MeV (Robert Kaminski dixit), making the 5-
digit accuracy of the ρ(770) mass in the PDG tables very
questionable.

•When one is dealing with a very broad and highly inelastic
resonance, possibly overlapping with others, this discrepancy
can even become larger than 100 MeV (see next slide).
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determined by the original pion EM FF G.-S. model (13) to

be valid only at the elastic region.

A totally different situation is in a generalization of the

U&A pion EM FF model. Here, the contribution of all three

vector mesons is at an equal level. Only now, the effective

inelastic threshold, which is left as a free parameter of the

model, has to be taken into account explicitly. Therefore,

instead of the q variable, the W variable

WðtÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtin−t0
t0

Þ1=2 þ ðt−t0
t0
Þ1=2

q

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtin−t0
t0

Þ1=2 − ðt−t0
t0
Þ1=2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtin−t0
t0

Þ1=2 þ ðt−t0
t0
Þ1=2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtin−t0
t0

Þ1=2 − ðt−t0
t0
Þ1=2

q

ð30Þ

is now considered in a construction of the pion EM FF

U&A model, which is mapping the four-sheeted Riemann

surface in the t variable into one W plane.

Then, the pion EM FF model, considering contributions

of all three vector meson resonances, takes the form [14]

FEM;I¼1
π ½WðtÞ� ¼

�

1 −W2

1 −WN

�

2 ðW −WZÞðWN −WPÞ

ðWN −WZÞðW −WPÞ
:

:

�

ðWN −WρÞðWN −W�
ρÞðWN − 1=WρÞðWN − 1=W�

ρÞ

ðW −WρÞðW −W�
ρÞðW − 1=WρÞðW − 1=W�

ρÞ
ðfρππ=fρÞ

þ
X

υ¼ρ
0;ρ00

ðWN −WυÞðWN −W�
υÞðWN þWυÞðWN þW�

υÞ

ðW −WυÞðW −W�
υÞðW þWυÞðW þW�

υÞ
ðfυππ=fυÞ

	

; ð31Þ

with

ðfρ0ππ=fρ0Þ ¼ −

N
ρ
00

jW
ρ
00 j4

N
ρ
0

jW
ρ
0 j4
−

N
ρ
00

jW
ρ
00 j4
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N
ρ
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jW
ρ
00 j4
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0
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−
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FIG. 6. Optimal description of the unified BESIII-BABAR

complete data on σtotðe
þe− → π

þ
π
−Þ by the generalized pion

EM FF G.-S. model.

TABLE II. The values of ρmeson parameters obtained from fits

of BESIIIþ BABAR data [1,2] on the total cross section of the

eþe− → π
þ
π
− process with Gounaris-Sakurai and Unitary&

Analytic pion EM FF models to be compared to PDG values.

Parameter

PDG value

(MeV)

Gounaris-Sakurai

(MeV)

Unitary &

Analytic (MeV)

mρ 775.26� 0.25 774.81� 0.01 763.88� 0.04

mρ
0 1465.00� 25.00 1497.70� 1.07 1326.35� 3.46

mρ
00 1720.00� 20.00 1848.40� 0.09 1770.54� 5.49

Γρ 149.10� 0.80 149.22� 0.01 144.28� 0.01

Γρ
0 400.00� 60.00 442.15� 0.54 324.13� 12.01

Γρ
00 250.00� 100.00 322.48� 0.69 268.98� 11.40

χ
2=ndf 0.981

[14 parameters]

1.842

[11 parameters]

ERIK BARTOŠ et al. PHYSICAL REVIEW D 96, 113004 (2017)
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Resonance-Spectrum Expansion

(EvB & GR, Annals Phys. 324 (2009) 1620)

⇒Building blocks of (non-exotic) RSE are:

V =

M

M

M

M

qq̄

V ΩV =

M

M

M

M

qq̄ qq̄

• V is the effective two-meson potential;
• Ω is the two-meson loop function;
• the blobs are the 3P0 vertex functions, modelled by a spherical δ

shell in r space, i.e., a spherical Bessel function in p space;
• the wiggly lines stand for s-channel exchanges of infinite towers

of qq̄ states, i.e., a kind of Regge propagators.



⇒ For N meson-meson channels and several qq̄ channels:

V
(Li ,Lj )
ij (pi , p

′
j ; E ) = λ2r0 j iLi (pi r0) j jLj (p′j r0)

Nqq̄∑

α=1

∞∑

n=0

g
(α)
i (n)g

(α)
j (n)

E − E
(α)
n

≡ Rij(E ) j iLi (pi r0) j jLj (p′j r0) .

⇒ The closed-form off-energy-shell T -matrix then reads

T
(Li ,Lj )
ij (pi , p

′
j ; E ) =

−2λ2r0

√
µipiµ

′
jp
′
j j iLi (pi r0)

N∑

m=1

Rim(E )
{

[11− ΩR]−1
}
mj

j jLj (p′j r0) ,

Ω = −2iλ2r0 diag
(

jnLn(knr0)h
(1)n
Ln

(knr0)
)
.

⇒ The corresponding unitary and symmetric S-matrix is given by

S
(Li ,Lj )
ij (ki , k

′
j ; E ) = δij + 2iT

(Li ,Lj )
ij (ki , k

′
j ; E ) .



Complex masses in the S-matrix

S. Coito, G. Rupp, E. van Beveren, Eur. Phys. J. C 71 (2011) 1762;
T. Takagi, Japan J. Math. 1 (1924) 82.

With complex masses, S ceases to be unitary. Nevertheless, S is
always symmetric, so can be decomposed via Takagi factorisation:

S = VDV T , (11)
with V unitary and D a real non-negative diagonal matrix. Then

S†S = (V T )†DV †VDV T = (V T )†D2V T = U†D2U , (12)

where U ≡ V T is also unitary. So D =
√

US†SU†. Moreover, since
S = 11 + 2iT is manifestly non-singular, the eigenvalues of S†S are
even all nonzero and U is unique. Thus, we may define

S ′ ≡ SU†D−1U . (13)
Then, using Eq. (11) and V = UT , we have

S ′ = UTDUU†D−1U = UTU , (14)
which is obviously symmetric and, as

(UTU)† = U†(U†)T = U−1(U−1)T = (UTU)−1 , (15)

also unitary. So S ′ can be defined as the S-matrix for a scattering
process with complex masses in the asymptotic states.
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A low-lying scalar meson nonet in a unitarized
meson model
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Zentrum für Interdisziplinäre Forschung, Universität Bielefeld

D-4800, Bielefeld, Federal Republic of Germany

J. E. Ribeiro4,6

Centro de F́ısica da Matéria Condensada
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Abstract

A unitarized nonrelativistic meson model which is successful for the description of the
heavy and light vector and pseudoscalar mesons yields, in its extension to the scalar mesons
but for the same model parameters, a complete nonet below 1 GeV. In the unitarization
scheme, real and virtual meson-meson decay channels are coupled to the quark-antiquark
confinement channels. The flavor-dependent harmonic-oscillator confining potential itself
has bound states ǫ(1.3 GeV), S(1.5 GeV), δ(1.3 GeV), κ(1.4 GeV), similar to the results
of other bound-state qq̄ models. However, the full coupled-channel equations show poles
at ǫ(0.5 GeV), S(0.99 GeV), δ(0.97 GeV), κ(0.73 GeV). Not only can these pole positions
be calculated in our model, but also cross sections and phase shifts in the meson-scattering
channels, which are in reasonable agreement with the available data for ππ, ηπ and Kπ in
S-wave scattering.
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• Unitarised quark-meson model, with all parameters fixed from
previous work.

• All decay channels with pseudoscalar and vector mesons included.

• Poles of light scalar mesons found at:
f0(470− i208), K ∗0 (727− i263), a0(968− i28), f0(994− i20).

• Additional poles found for f0(1370), K ∗0 (1430), a0(1450),
f0(1500), at reasonable values.

•Moreover, S-wave scattering data were reasonably reproduced.
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3 Results

Let us first discuss S-wave ππ scattering. The lowest bound state of our confining potential for

JPC = 0++ qq̄ pairs has a mass of about 1.3 GeV, which is at precisely the same place as the

ground state of other bound-state meson models. If we turn on the overall coupling constant

of the transition potential, bound states show up as resonances in ππ scattering. At the model

value of the overall coupling constant, which was obtained from the analysis of pseudoscalar and

vector mesons [23], a pole shows up with a real part of about 1.3 GeV, which accidentally equals

the above-mentioned bound-state mass. Naively we might expect that one would only find a

resonating structure in ππ scattering in that energy domain. However, Fig. (1) shows that the

calculated phase shifts have structures at much lower energies, which indicates that low-lying

resonance poles have been generated.
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Figure 1: Elastic S-wave ππ phase shifts. The various sets of data are taken from (⊙, [9]), (⋆,
×, ⋄, ⊳, ⊲, for analyses A, B, C, D, and E, respectively, of [10]), (◦, [11]), (∗, [12]), and (•, [13]).
The solid line is our model result.

We can scan the complex energy plane for these poles in the scattering matrix, finding one

pole at about 450 MeV with a roughly 250 MeV imaginary part, and another pole at the S(980)

position. The imaginary part of the first pole is so large that a simple Breit-Wigner parametriza-

tion is impossible, and large differences between the “mass” of the resonance and the real part

of the pole position will occur. How these poles are connected to the harmonic-oscillator bound

states is a very technical story, which is beyond the scope of this paper; suffice it to state that

such a connection exists. As we have discussed in [27], these poles are special features of S-wave

scattering and do not show up in P - and higher-wave scattering, which explains quite naturally

why they are not found there.

5

Poles predicted at (470− i208) MeV and (990− i20) MeV.



D∗s0(2317) & D∗0(2300–2400)
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2.0 2.2 2.4 2.6

-0.8

-0.6

-0.4

-0.2

<e(E)

=m(E)

-

�

�

�

�

�

�

�

�

�

0.15

0.2

0.3

0.5

0.75

0.3

0.5

0.75

DK S wave

�

��

�

H

Hj

�

Figure 2: S-matrix poles for DK S-wave sattering as a funtion of the oupling onstant

�. Threshold is at 2.363 GeV; units are in GeV. The trajetory of the left-hand branh

partly oinides with the real axis. For larity, we have displaed the virtual bound states

slightly downwards, and the real bound states upwards. Notie that for � = 0:75 (physial

value) one has a real bound state in this model.

2.0 2.2 2.4

-0.8

-0.6

-0.4

-0.2

<e(E)

=m(E)

�

�

�

�

�

�

�

�

0.15

0.2

0.3

0.5

0.75

0.3

0.5

0.75

D� S wave

6

�

�R

�

Figure 1: S-matrix poles for D� S-wave sattering as a funtion of the oupling onstant

�. Threshold is at 2.009 GeV; units are in GeV.



S. Coito, G. Rupp, and E. van Beveren, Phys. Rev. D 84 (2011) 094020

2.46 2.48 2.50 2.52 2.54

-0.004

-0.003

-0.002

-0.001

0.000

ReE (GeV)

Im
E

(G
eV

)

•

•

KD∗ →

↑ increasing λ

ւ

2.30 2.35 2.40 2.45 2.50

-0.25

-0.20

-0.15

-0.10

-0.05

ReE (GeV)

I
m

E

(
G

e
V

)

......
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
...

..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
...
....
....
....
.....
.....
......
........
...............

........
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
. . . . . . . . . . . . ....

......
.

..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
...
....
....
....
.....
.....
......
........
................
.

...........
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . . ................

.

..

..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
...
....
....
....
.....
.....
......
.......
...........
.........

................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
................................

..

..

..

..

..

..

..

..

..

..

...
...
...
...
...
...
...
....
....
....
....
.....
......
.......
.........
..............

� � ���
# inreasing �

Ds1(2460) and Ds1(2536) D1(2430)



χc1(3872) as an intrinsic or a dynamical unitarised 2 3P1 cc̄ state

S. Coito, G. Rupp, and E. van Beveren
Eur. Phys. J. C 73 (2013) 2351 [arXiv:1212.0648 [hep-ph]]

3.80 3.90 4.00 4.10

-0.15

-0.10

-0.05

0.00

ReE (GeV)

Im
E

(G
eV

)

∗

∗∗

∗
← D0D∗0

←

ւ

ր

I



Wave function of χc1(3872) as a unitarised 2 3P1 cc̄ state
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We perform a lattice study of charmonium-like mesons with JPC ¼ 1þþ and three quark contents

c̄cd̄u, c̄cðūuþ d̄dÞ and c̄cs̄s, where the later two can mix with c̄c. This simulation with Nf ¼ 2 and

mπ ≃ 266 MeV aims at the possible signatures of four-quark exotic states. We utilize a large basis of c̄c,

two-meson and diquark-antidiquark interpolating fields, with diquarks in both antitriplet and sextet color

representations. A lattice candidate for Xð3872Þ with I ¼ 0 is observed very close to the experimental state

only if both c̄c and DD̄� interpolators are included; the candidate is not found if diquark-antidiquark and

DD̄� are used in the absence of c̄c. No candidate for neutral or charged Xð3872Þ, or any other exotic

candidates are found in the I ¼ 1 channel. We also do not find signatures of exotic c̄cs̄s candidates below

4.2 GeV, such as Yð4140Þ. Possible physics and methodology related reasons for that are discussed. Along

the way, we present the diquark-antidiquark operators as linear combinations of the two-meson operators

via the Fierz transformations.

DOI: 10.1103/PhysRevD.92.034501 PACS numbers: 12.38.Gc, 14.40.Pq, 14.40.Rt

I. INTRODUCTION

The experimental discovery of charged resonances

Zcð3900Þ
þ [1] and Zð4430Þ� [2,3] gives signatures for

hadrons with minimal quark content c̄cd̄u. The neutral

Xð3872Þ and yet-unconfirmed Yð4140Þ with charge parity

C ¼ þ1 also appear to have significant four-quark Fock

components. Most of the observed exotic states have

JP ¼ 1þ. The JP for some has not been settled exper-

imentally and JP ¼ 1þ presents one possible option.

In this paper, we perform a lattice investigation of the

charmonium spectrum, looking for charmonium-like states

with quantumnumbers JPC ¼ 1þþ and three quark contents:

c̄cd̄u, c̄cðūuþ d̄dÞ and c̄cs̄s, where the later two channels

have I ¼ 0 and can mix with c̄c (C indicates C-parity of

neutral isospin partners for charged states).Ourmain interest

in these channels is aimed at a first-principle study of

Xð3872Þ and Yð4140Þ, which were observed in Xð3872Þ →
J=ψρ; J=ψω; DD̄� and Yð4140Þ → J=ψϕ, for example.

From the experimental side, the long known exotic

candidate Xð3872Þ [4] is confirmed to have JPC ¼ 1þþ

[5]. However, questions about its isospin remain unsettled.

If it has isospin I ¼ 1, one expects charged partners.

Observation of a nearly equal branching fraction for

Xð3872Þ→ J=ψω and Xð3872Þ → J=ψρ decays [6] and

searches for charged partner Xð3872Þ states decaying to

J=ψρ� [7] speak against a pure I ¼ 1 state. There are a few

other candidates with C ¼ þ1 that could possibly have

JPC ¼ 1þþ like Xð3940Þ [8], Zð4050Þ� [3] and Zð4250Þ�

[3]. A detailed review on these can be found in Ref. [9].

The growing evidence for the Yð4140Þ resonance in the

J=ψϕ invariant mass [10] serves as a promising signature

for exotic hadrons with hidden strangeness. Similarities in

the properties of Xð3930Þ and Yð4140Þ led to an interpre-

tation that Xð3930Þ may be a D�D̄� molecule and Yð4140Þ
is its hidden strange counterpart D�

sD
�
s molecule [11].

However, the upper limit for the production of Yð4140Þ
in γγ → J=ψϕ is observed to be much lower than theoretical

expectations for aD�
sD

�
s molecule with JPC ¼ 0þþ and 2þþ

[12]. Hence the quantum numbers of Yð4140Þ stay unsettled
and it remains open for a JPC ¼ 1þþ assignment.

From a theoretical perspective, the description of such

resonances is not settled. Several suggestions have been

made interpreting them as mesonic molecules [13], as

diquark-antidiquark structures [14], as a cusp phenomena

[15] or as a jcc̄gi hybrid meson [16]. A great deal of

theoretical studies are based on phenomenological

approaches like quark model, (unitarized) effective field

theory and QCD sum rules (see reviews [9]).

It is paramount to establish whether QCD supports the

existence of resonances with exotic character using first

principles techniques such as lattice QCD. Simulations that

considered only c̄c interpolators could not provide evidence

for Xð3872Þ. The first evidence from a lattice simulation for

Xð3872Þ with I ¼ 0 was reported in Ref. [17], where a

*
padmanath.madanagopalan@uni‑graz.at

†
christian.lang@uni‑graz.at

‡
sasa.prelovsek@ijs.si

PHYSICAL REVIEW D 92, 034501 (2015)

1550-7998=2015=92(3)=034501(14) 034501-1 © 2015 American Physical Society

. . . “In the physical world with Nc = 3, it is argued that
tetraquarks could exist at subleading orders [46] of large Nc

QCD. However, in the presence of the leading order two-
meson terms, one should take caution in interpreting the
nature of the levels purely based on their overlap factors
onto various four-quark interpolators.” . . .



binding energy in the present paper is larger due to the

larger interpolator basis. These results are in agreement

with a possible interpretation of X(3872), where its proper-

ties are due to the accidental alignment of a c̄c state with

the D0D̄�0 threshold [49,50], but we cannot rule out other

options.

With regard to the other experimentally observed char-

monia-like states [e.g. Xð3940Þ], which could appear in

this channel, we do not find any candidate in addition to

the expected two-meson scattering levels. We also do not

find candidates for other c̄c states with JPC ¼ 1þþ [e.g.

χ1cðnPÞ] in the region between the DD̄� threshold

and 4.2 GeV.

B. I ¼ 1 channel with flavor c̄cd̄u

A careful analysis of this isospin channel is crucial due to

the large branching ratio for the decay Xð3872Þ→ J=ψρ
and current experimental interests in search of a charged

Xð3872Þ. With no disconnected diagrams allowed in the

light quark propagation, the correlation matrix is con-

structed purely of four-quark interpolators and connected

Wick contractions in Fig. 1(a).

The spectrum of eigenstates is shown in Fig. 3(b), where

all energies are close to noninteracting energy levels. All

the eigenstates have a dominant overlap with the two-

meson interpolators. The spectrum shows very little influ-

ence on the inclusion of ½c̄ q̄�Ḡ½cq�G, which is evident from

Fig. 3(b). Given that all the levels below 4.2 GeV can be

attributed to the expected two-meson scattering states, we

conclude that our lattice simulation gives no evidence for

Zcð4050Þ
þ and Zcð4250Þ

þ.

Our results also do not support charged or neutral

Xð3872Þ with I ¼ 1. There is no experimental indication

for charged X, while the neutral X does have a large decay

rate to I ¼ 1 final state J=ψρ0. One popular phenomeno-

logical explanation for this decay is that Xð3872Þ has I ¼ 0

and the isospin is broken in the decay mechanism (due to

the DþD̄�− vs D0D̄�0 mass difference) [50,51]. According

to another explanation, X is a linear combination of I ¼ 0

and I ¼ 1 components, where the I ¼ 1 component van-

ishes in the isospin limit [52]. Our simulation is performed

in the isospin limit mu ¼ md, so it is perhaps not surprising

that X with I ¼ 1 is not observed. Future simulations with

nondegenerate u=d quarks would be very welcome for this

channel.

As pointed out in Sec. II, ρ in J=ψρ is treated as stable,

although ρð1Þ is kinematically close to the decay channel

πð1Þπð0Þ. In the absence of a simulation of a three-meson

system, it is disputable what “noninteracting” energy

should be taken for the ρð1Þ. An estimate from the diagonal

correlator ρð1Þ leads to noninteracting energy roughly

65 MeV below the eigenstate energy, which is identified

to have a dominant overlap with the J=ψð1Þρð−1Þ inter-

polator. However, taking the resonance position [26] brings

the noninteracting level in agreement with the measured

eigenenergy.

C. I ¼ 0 channel with flavor c̄cs̄s and c̄c

Our goal in simulating this channel is to search for a

possible presence of the Yð4140Þ resonance, which was

found in J=ψϕ scattering in several experiments [10]. Our

lattice simulation of J=ψϕ scattering takes into account the

annihilation of the valence strange quarks and thereby the

mixing with c̄c flavor content.

With no strange quark effects in the sea, the study of this

channel is based on the following assumptions. We con-

struct a basis with only c̄c and four-quark operators (OMM,

O4q) with valence hidden strange content for this analysis.

We assume that these interpolators have negligible cou-

pling to two-meson states with flavor content c̄cðūuþ d̄dÞ.
In other words, we assume that two-meson states like DD̄�

and J=ψω will not appear in the spectrum based on the

chosen interpolators. The resulting spectrum in this channel

confirms this assumption. We point out that Yð4140Þ has
been experimentally observed only in the J=ψϕ final state

with valence strange content, but it has not been observed

inDD̄� and J=ψω final states. Although this ensemble does

not have strange quarks in the sea, we assume that the

valence strange content could uncover hints on the exist-

ence of the charm-strange exotics, if they exists.

Spectra in this channel are shown in Fig. 4. We identify

the lowest two states, represented by squares, to be χc1ð1PÞ
and the level related to Xð3872Þ. The remaining four states

are identified with the expected DsD̄
�
s and J=ψϕ scattering

levels. Thus in the energy region below 4.2 GeV, we find no

levels that could be related to Yð4140Þ or any other exotic

structure. Note that the existence of Yð4140Þ is not yet

finally settled from experiment, and its quantum numbers,

except for C ¼ þ1, are unknown. Therefore it is possible

that its absence in our simulation is related to the fact that

we explored the channel JP ¼ 1þ only.

D. Discussion

The only exotic charmonium-like state found in our

simulation is a Xð3872Þ candidate with JPC ¼ 1þþ and

TABLE III. Mass of Xð3872Þ with respect to ms:a: and the

D0D̄
�
0
threshold. Our estimates are from the correlated fits to

the corresponding eigenvalues using single exponential fit form

with and without diquark-antidiquark operators. Results from

previous lattice QCD simulations [17,18] and experiment are also

presented.

Xð3872Þ mX −ms:a: mX −mD0
−mD�

0

Lat. 816(15) −8ð15Þ
Lat.−O4q 815(8) −9ð8Þ
LQCD [17] 815(7) −11ð7Þ
LQCD [18] � � � −13ð6Þ
Experiment 803(1) −0.11ð21Þ
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old [49,50], but we cannot rule out other options.” . . .
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• However, K?′ resonance at (1.33± 0.02) GeV (Exp. 1.41):
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Production amplitudes in the RSE formalism
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Author's personal copy

broader structure, namely the f0ð600Þ, and is furthermore not very distant from a broad

resonance around 1.35 GeV, viz. the f0ð1370Þ [15].
It is our understanding that mesonic resonances, like the f0ð600Þ and the f0ð980Þ, form

an integral part of the whole meson family. Therefore, we have developed a model for all

q�q phenomena, including those involving charm and bottom. Here, we wish to develop a

new tool for data analysis, which is an amplitude for the description of final-state interac-

tions in two-meson subsystems emerging in decay processes involving other particles. This

production amplitude is based on the two-meson scattering amplitude given in Eq. (5).

For the description of the final-state interactions of meson pairs in production pro-

cesses, it is common practice to make the spectator assumption, according to which the

other emerging hadrons do not interact strongly with the pair. Evidently, this is an

approximation, which is justified by the observation that in most production processes res-

onances involving the third (or fourth, . . .) hadron are much higher in mass than the ener-

gies considered for the pair. Here, we moreover assume that the meson pair is generated

from an initially produced q�q pair. Our amplitude for the production of a meson pair,

including all higher-order contributions from final-state interactions, is depicted in

Fig. 3. Also using expression (5) for the scattering amplitude, we are led to define for

the production amplitude

aða ! iÞ ¼ hi;~pijð1þ TGÞV tjðq�qÞa;Ei

¼ hi;~pijV tjðq�qÞa;Ei þ
X

m

Z

d3kmhi;~pijT jm;~kmiGð~kmÞhm;~kmjV tjðq�qÞa;Ei

¼ ffiffiffi

p
p

X

‘;m

ð�iÞ‘j‘ðpir0ÞY ð‘Þ
m ðp̂iÞQðaÞ

‘q�q
ðEÞ

� g
ai � 2i 2

X

m

l
m
p
m
j‘ðpmr0Þh

ð1Þ
‘ ðp

m
r0Þgam

A
ð‘Þ
im ðEÞ

D
ð‘ÞðEÞ

( )

: ð15Þ

Here, Q
ðaÞ
‘q�q

represents the overlap with the initial q�q distribution, having quantum numbers

a and relative interquark angular momentum ‘q�q. Notice that the latter quantum number is

related—though unequal—to the relative two-meson angular momentum ‘, because of to-

tal-angular-momentum and parity conservation. Below, we shall discuss the properties of

production amplitude (15) for pairs of interacting mesons.

4.1. P i ¼
P

m
cmT mi?

The result (15) agrees to some extent with the expression proposed in Refs. [27,28]. Like

here, the authors of Ref. [28] based their ansatz on the OZI rule [3] and the spectator pic-

ture, so as to find that the production amplitude can be written as a linear combination of

Fig. 3. Graphical representation of the RSE production amplitude. The transition q�q ! MM , denoted by V t in

the text, is here represented by v; the resulting effective MM interaction is denoted by V.
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g
ai � 2i 2

X

m

l
m
p
m
j‘ðpmr0Þh

ð1Þ
‘ ðp

m
r0Þgam

A
ð‘Þ
im

D
ð‘Þ

¼ 1

D
ð‘Þ g

ai þ 2i 2
X

m

l
m
p
m
j‘ðpmr0Þhð1Þ‘ ðp

m
r0Þ g

aiA
ð‘Þ
mm

� g
am
A

ð‘Þ
im

h i

( )

¼ g
ai

D
ð‘Þ þ 2i 2

X

m 6¼i

l
m
p
m
j‘ðpmr0Þhð1Þ‘ ðp

m
r0Þ g

ai

A
ð‘Þ
mm

D
ð‘Þ � g

am

A
ð‘Þ
im

D
ð‘Þ

" #

: ð18Þ

From this equation it is obvious that, in our approach, scattering and production have ex-

actly the same poles in the complex energy plane, as they share the global denominator D.

4.3. The central result

The pole structure of our production amplitude is exhibited very explicitly in formula

(18), and shows that it is completely given by D, the very same denominator that deter-

mines the pole structure for elastic scattering. The conclusion is that resonance shapes

are different for production and scattering because they are largely determined by the

respective numerators. Moreover, precisely the numerator Aii describing elastic scattering

in the ith two-meson channel has dropped out of expression (18). Hence, when restricted

to a one-channel model, our production amplitude is completely determined by just the

denominator D.

The result (18) may be substituted into relation (15). Moreover, using expression (14)

for the partial-wave amplitudes, we arrive at

aða ! iÞ ¼ ffiffiffi

p
p

X

‘;m

ð�iÞ‘j‘ðpir0ÞY ð‘Þ
m ðp̂iÞQðaÞ

‘q�q
ðEÞ

� g
ai

D
ð‘Þ þ i

X

m 6¼i

l
m
p
m
h
ð1Þ
‘ ðp

m
r0Þ g

ai

t‘ðm ! mÞ
j‘ðpmr0Þ

� g
am

t‘ði ! mÞ
j‘ðpir0Þ

� �

( )

: ð19Þ

Eq. (19) is the central result of our paper. It explicitly relates the ingredients of elastic scat-

tering to the amplitude for production in the spectator approximation. We were able to

achieve this because in the RSE one can determine in an analytically closed form all terms

of the perturbation expansions (5) [2] and (15). Hence, relations (11)–(13) can be derived

and explicitly verified. We may thus conclude that at least for a non-relativistic (NR)

microscopic model, i.e., at low energies, production and scattering are related to one an-

other through Eq. (19).

4.4. P ¼ T=V

Expression (18) takes an extremely simple form in the case that all inelasticity is either

absent or neglected. For the ‘th partial wave of the production amplitude (15), we then

obtain

að‘Þ / j‘ðpr0ÞQðaÞ
‘q�q
ðEÞ 1

D
ð‘Þ : ð20Þ
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tði ! jÞ ¼ hi;~pijtjj;~pji ¼ hi;~pijðV þ VGV þ VGVGV þ . . .Þjj;~pji

¼
2

4p2

X

1

‘¼0

ð2‘þ 1ÞP ‘ðp̂i � p̂jÞj‘ðpir0Þj‘ðpjr0Þ
A

ð‘Þ
ij ðEÞ

D
ð‘ÞðEÞ

; ð5Þ

where A and D are functions of the total invariant mass E satisfying the unitarity condi-

tion

ImðDð‘Þ
A

ð‘Þ
ij

�
Þ ¼ 2 2

X

m

lmpmj
2
‘ðpmr0ÞA

ð‘Þ
im A

ð‘Þ
jm

�
: ð6Þ

The denominator D contains the full pole structure of the coupled two-meson states. In

order to be a bit more specific, let us consider the scattering of charmed mesons, i.e.,

D�D;D� �D;D� �D�;Ds
�Ds;D

�
s
�Ds and D�

s
�D�
s , all coupled to c�c. For such a process, D has in

the RSE the form

D
ð‘ÞðEÞ ¼ 1þ 2i 2

X

m

g2m

X

1

n¼0

jF
ðnÞ
c�c ðr0Þj

2

E � En

( )

lmpmj‘ðpmr0Þh
ð1Þ
‘ ðpmr0Þ; ð7Þ

where the outer sum runs over all two-meson channels, and the inner sum over all recur-

rencies n for the operator H c describing confinement in the c�c system. F
ðnÞ
c�c and En repre-

sent the eigenstate and eigenvalue of the nth recurrency of the of H c spectrum, respectively.

Furthermore, the gm stand for the relative couplings of each of the two-meson systems to

c�c, while h
ð1Þ
‘ is a spherical Hankel function of the first kind.

The denominator DðEÞ vanishes for E near En and small overall coupling . In this case,

the scattering cross sections in all channels display narrow spikes for values of E in the

vicinity of Enðn ¼ 0; 1; 2; . . .Þ. Hence, for small , the theoretical cross sections repro-

duce—up to small shifts—the hypothetical c�c confinement spectrum.

However, for larger values of the zeros in D are no longer near the eigenvalues of H c,

but move deeper into the complex E plane, farther away from the real axis and with appre-

ciable shifts for the real parts as well. Then, the resonance spectrum does no longer repro-

duce the spectrum of H c: resonances start overlapping and even the number of zeros in D

that lie close enough to the real energy axis to be observed experimentally may change. We

believe this describes quite accurately the true situation in hadron spectroscopy.

Below the lowest threshold, poles, i.e., zeros in D (Eq. 7), come out on the real axis,

because the expression ij‘h
ð1Þ
‘ turns real. In that case, expression (5) describes bound c�c

states, such as gc; J=w; vcð1P Þ and wð2SÞ, yet with an admixture of two-meson compo-

nents. The energy eigenvalues of these ‘‘dressed’’ states then depend on the value of .

It has been observed [9,10] that charmonium mass shifts with respect to the pure confine-

ment spectrum can be surprisingly large in the RSE, as well as in other approaches [11].

In the present work, we intend to derive relations among A
ð‘Þ
ij ;D

ð‘Þ and Z
ð‘Þ
ij . In princi-

ple, this could be achieved by just performing the calculus outlined in Ref. [2]. However,

here we shall allow more general expressions for the Z matrix in the Born term (4). Hence,

apart from the unitarity condition (6), we must construct a second relation. For that pur-

pose, we write the identity

1220 E. van Beveren, G. Rupp / Annals of Physics 323 (2008) 1215–1229



ψ(3770)

BES reported an “anomalous line shape” of the ψ(3770)
resonance in arXiv:0807.0494 [hep-ex]:

“The anomalous line-shape may be explained by two possi-
ble enhancements of the inclusive hadron production near
the center-of-mass energies of 3.764 GeV and 3.779 GeV,
indicating that either there is likely a new structure in ad-
dition to the ψ(3770) resonance around 3.773 GeV, or
there are some physics effects reflecting the DD produc-
tion dynamics.”

Our explanation in EvB, GR, Phys. Rev. D 80 (2009) 074001:

• Opening of DD̄ threshold in e+e− produces a broad bump in the
production cross section (Bessel function).

• On top of the structure there is a Breit-Wigner resonance, with
M = 3781 MeV and Γ = 17 MeV, i.e., narrower and a little bit
heavier than in the PDG tables.
• See figure on next slide.
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ψ(4260) decay modes in the PDG-2018 Meson Listings

M. Tanabashi al. (Particle Data Group)
Phys. Rev. D 98 (2018) 030001

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

1 From a three-resonance fit.
2 From a two-resonance fit.
3 From a single-resonance fit. Supersedes AUBERT,B 05I.
4 From a three-resonance fit.
5 From a combined fit of BELLE, BABAR and BES3 e+ e− → π+π− J/ψ and e+ e− →
π+π−ψ(2S) data.

6 Superseded by LIU 13B.
7 From a single-resonance fit. Two interfering resonances are not excluded. Superseded
by LEES 12AC.

ψ(4260) DECAY MODESψ(4260) DECAY MODESψ(4260) DECAY MODESψ(4260) DECAY MODES

Mode Fraction (Γi /Γ)

Γ1 e+ e−

Γ2 J/ψπ+π− seen

Γ3 J/ψ f0(980), f0(980) → π+π− seen

Γ4 Zc(3900)
±π∓, Z±

c → J/ψπ± seen

Γ5 J/ψπ0π0 seen

Γ6 J/ψK+K− seen

Γ7 J/ψK0
S K

0
S not seen

Γ8 J/ψη not seen

Γ9 J/ψπ0 not seen

Γ10 J/ψη′ not seen

Γ11 J/ψπ+π−π0 not seen

Γ12 J/ψηπ0 not seen

Γ13 J/ψηη not seen

Γ14 ψ(2S)π+π− not seen

Γ15 ψ(2S)η not seen

Γ16 χc0ω not seen

Γ17 χc1π
+π−π0 not seen

Γ18 χc2π
+π−π0 not seen

Γ19 hc (1P)π
+π− not seen

Γ20 φπ+π− not seen

Γ21 φ f0(980) → φπ+π− not seen

Γ22 DD not seen

Γ23 D0D0 not seen

Γ24 D+D− not seen

Γ25 D∗D+c.c. not seen

Γ26 D∗(2007)0D0+c.c. not seen

Γ27 D∗(2010)+D−+c.c. not seen

Γ28 D∗D∗ not seen

Γ29 D∗(2007)0D∗(2007)0 not seen

Γ30 D∗(2010)+D∗(2010)− not seen

Γ31 DD π+c.c.

HTTP://PDG.LBL.GOV Page 3 Created: 6/5/2018 19:00

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Γ32 D0D−π++c.c. (excl.
D∗(2007)0D∗0 +c.c.,
D∗(2010)+D− +c.c.)

not seen

Γ33 DD∗π+c.c. (excl. D∗D∗) not seen

Γ34 D0D∗−π++c.c. (excl.
D∗(2010)+D∗(2010)−)

not seen

Γ35 D0D∗(2010)−π++c.c. not seen

Γ36 D∗D∗π not seen

Γ37 D+
s D−

s not seen

Γ38 D∗+
s D−

s +c.c. not seen

Γ39 D∗+
s D∗−

s not seen

Γ40 pp not seen

Γ41 ppπ0 not seen

Γ42 K0
S K

±π∓ not seen

Γ43 K+K−π0 not seen

Radiative decaysRadiative decaysRadiative decaysRadiative decays

Γ44 ηc (1S)γ possibly seen

Γ45 χc1γ not seen

Γ46 χc2γ not seen

Γ47 χc1(3872)γ seen

ψ(4260) Γ(i)× Γ(e+ e−)/Γ(total)ψ(4260) Γ(i)× Γ(e+ e−)/Γ(total)ψ(4260) Γ(i)× Γ(e+ e−)/Γ(total)ψ(4260) Γ(i)× Γ(e+ e−)/Γ(total)

Γ
(
J/ψπ+π−

)
× Γ

(
e+ e−

)
/Γtotal Γ2Γ1/ΓΓ

(
J/ψπ+π−

)
× Γ

(
e+ e−

)
/Γtotal Γ2Γ1/ΓΓ

(
J/ψπ+π−

)
× Γ

(
e+ e−

)
/Γtotal Γ2Γ1/ΓΓ

(
J/ψπ+π−

)
× Γ

(
e+ e−

)
/Γtotal Γ2Γ1/Γ

VALUE (eV) EVTS DOCUMENT ID TECN COMMENT

9.2±1.0 OUR AVERAGE9.2±1.0 OUR AVERAGE9.2±1.0 OUR AVERAGE9.2±1.0 OUR AVERAGE

9.2±0.8±0.7 1 LEES 12AC BABR 10.58 e+ e− → γπ+π− J/ψ

8.9+3.9
−3.1±1.8 8.1 HE 06B CLEO 9.4–10.6 e+ e− → γπ+π− J/ψ

• • • We do not use the following data for averages, fits, limits, etc. • • •
6.4±0.8±0.6 2 LIU 13B BELL e+ e− → γπ+π− J/ψ

20.5±1.4±2.0 3 LIU 13B BELL e+ e− → γπ+π− J/ψ

6.0±1.2+4.7
−0.5

2,4 YUAN 07 BELL 10.58 e+ e− → γπ+π− J/ψ

20.6±2.3+9.1
−1.7

3,4 YUAN 07 BELL 10.58 e+ e− → γπ+π− J/ψ

5.5±1.0+0.8
−0.7 125 5 AUBERT,B 05I BABR 10.58 e+ e− → γπ+π− J/ψ

1 From a single-resonance fit. Supersedes AUBERT,B 05I.
2 Solution I of two equivalent solutions in a fit using two interfering resonances.
3 Solution II of two equivalent solutions in a fit using two interfering resonances.
4 Superseded by LIU 13B.
5 From a single-resonance fit. Two interfering resonances are not excluded. Superseded
by LEES 12AC.
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ψ(4260) as a non-resonant cc̄ structure from inelasticities

E. van Beveren, G. Rupp, and J. Segovia
Phys. Rev. Lett. 105 (2010) 102001 [arXiv:1005.1010 [hep-ph]]

Depletion by open-charm decays
of the X(4260) signal

in π+π- J/ψ

By threshold enhancements:
DD, DD*, DsDs, D*D*, DsDs*, Ds*Ds*, ΛcΛc.

By cc resonances: ψ(3S), ψ(2D), ψ(4S), ψ(3D).

  - data from BaBar, Phys. Rev. Lett. 95, 142001 (2005)
  - figure from Evb, GR, JS, Phys. Rev. Lett. 105, 102001 (2010)



ψ(4660) as a ΛcΛ̄c threshold enhancement in BABAR data
E. van Beveren, X. Liu, R. Coimbra, and G. Rupp
Europhys. Lett. 85 (2009) 61002 [arXiv:0809.1151 [hep-ph]]
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Alternative vector bb̄ spectrum from threshold enhancements

E. van Beveren and G. Rupp, arXiv:0910.0967 [hep-ph]
Also see: EvB & GR, Phys. Rev. D 80 (2009) 074001
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Conclusions

• Breit-Wigner parametrisations of meson resonances can give rise
to large and difficult to control discrepancies when compared to
unitary approaches.

• In unquenched lattice computations of meson resonances, the dy-
namical effects of decay in a unitary framework can lead to large
corrections, too. Even for (quasi-)bound states such contributions
may be sizeable.

• Also in quark models of mesons, unitarisation — or at least ac-
counting for mass shifts due to strong decay — produce a strong
distortion of the confinement-only spectrum.

• For real progress in meson spectroscopy, the three approaches
— experiment, lattice, and models — should converge towards a
unified description of meson resonances in terms of pole positions
in a multichannel S-matrix.
•A highly underestimated and still somewhat underdeveloped issue

in the description of hadronic peaks is the mechanism of threshold
enhancements, which can mimic states commonly interpreted as
genuine resonances.




