Di-Higgs searches with Machine Learning

Miguel Bengala and Rodrigo Santo Supervisors: Michele Gallinaro and Giles Strong 6th September 2018

Introduction

- Goal
 - → explore the potential of advanced machine learning methods to project the expected discovery significance of non-resonant di-Higgs production in HL-LHC using the upgraded CMS
 ______ detector
- Task
 - → classify events into " $\mu \tau_h b b/e \tau_h b b/\tau \overline{\tau} b \overline{b}$ decay of di-Higgs" versus "background", optimising the approximate median significance (AMS)
- Data
 - → samples produced via Monte Carlo generator of di-Higgs and several background channels ($t \bar{t}$ inclusive, SM Higgs, DY to di-Lepton, di-Boson WW and ZZ, W+jets, vector boson VH, single top)

- The data previously described was fed to deep neural networks (DNN) in order to build a classifier
- Several recent methods in DNN were applied to evaluate their efficiency
- The study was first performed for the Higgs ML challenge \rightarrow simulated LHC collision data with features characterising events detected by ATLAS of Higgs $\tau \bar{\tau}$ decay
- Used not only as a benchmark of the performance of each model and its optimisations but also to get us familiarised with DNN concepts

- Basic classifier:
 - $\rightarrow\,$ Deep Neural Network with 3 hidden layers, each with 100 neurons
 - $\rightarrow~$ Output layer of a single neuron
 - $\rightarrow\,$ Ensemble of 10 networks is trained on 50% of the data, using cross-validation, for 65 epochs
 - Models pre-trained without sample weights
 - Models weighted according to loss on validation data
 - $\rightarrow\,$ Remaining data is used to test the classifier and optimise the threshold

Feature selection

- Train only on the low-level final-state features plus multiplicity features
 - $\rightarrow\,$ give the best performance, since the high-level features can be implicitly computed by the network
 - $\rightarrow\,$ final set of 52 selected features
 - *p_x*, *p_y*, *p_z*, |*p*|, mass, energy and transverse mass of the hadronic tau *τ_h*, the muon and di-Higgs: 21 features;
 - *p_x*, *p_y*, *p_z*, |*p*|, mass and energy of both b-jets, *h_{b b̄}* and *h_{τ τ̄}*: 24 features;
 - p_x , p_y , |p| of missing transverse momentum: 3 features.
 - s_T the scalar sum of p
 ^{miss}, muon p_T and the transverse energy of both b-jets and the τ_h: 1 feature;
 - total number of jets, number of b-jets and number of tau-jets: 3 features.

Feature selection

6

Feature selection

Figure 2: s_T ($\mu \tau_h b b$ channel)

Evaluation

- Performance was evaluated using the AMS (approximate median significance):
 - \rightarrow approximation of the significance, more accurate than $signal/\sqrt{background}$
 - $\rightarrow\,$ background uncertainty accounts for the statistical uncertainty and assumes a 10 % systematic uncertainty on normalisation
 - cut is required to accept at least 10 background events in order to ensure correct statistical uncertainties
- Final result uses binned prediction in Higgs Combine, not only to calculate significance but also limits.

- Three different activation functions tested:
 - \rightarrow ReLU [1]
 - \rightarrow SELU [2]
 - \rightarrow Swish-1 [4]
- Learning rate finder
- Learning Rate schedules: Cyclical LR and Cosine Annealing for decaying LR
- Data Augmentation (ϕ and/or axis symmetry)

Learning Rate Finder

- Choosing the right learning rate improves training time and convergence:
 - A tiny learning rate leads to underfitting: the model cannot adequately capture the underlying structure of the data
 - A high learning rate leads to overfitting: the model corresponds too closely to the training data, and may therefore fail for additional data

- To find the optimal value, the model is trained while the learning rate is increased from a small value.
- The loss calculated on the validation data is evaluated.
- According to Smith (2015) [5], the optimal learning rate is the highest at which the loss is still decreasing.

Learning Rate Finder

Figure 3: Loss on validation data in function of the learning rate for SELU, using Cross Validation on 10 folds

Learning Rate Finder - results

- + 1×10^{-3} chosen as the optimum learning rate
- Three different activation functions were tested:

	ReLU	SELU	Swish-1
AMS	0.9018	1.8417	0.9974
Threshold	0.9906	0.9988	0.9943

Table 1: AMS and cut using each activation function in an ensemble of 10 classifiers and setting the learning rate to the optimum value found.

- SELU performed clearly better
- It was the activation function used when performing the following tests

Learning Rate Scheduling

- It's common to adjust the learning rate during training, decreasing it once the validation loss becomes flat
- Recent papers (Smith 2015) [5] suggest:
 → cycling between low and high bounds using triangular function
- Loshchilov & Hutter (2016) [3] take this further and introduce the cosine annealing

Learning Rate Scheduling

• In cosine annealing schedule the learning rate decays as a cosine function, restarting once it reaches zero.

Figure 4: Cosine Annealing schedule with multiplicity 2 and 1×10^{-3} learning rate

- A multiplicity factor of 2 and an initial learning rate of 1×10^{-3} were used

	Const. Learning Rate	Cosine Annealing
AMS	1.8417	2.6681
Threshold	0.9988	0.9991

 Table 2: AMS and cut using a constant learning rate and a cosine annealing schedule in an ensemble of 10 classifiers.

Data Augmentation

• By performing rotations of the events over an angle ϕ and axis symmetries, "new" data can be created, without changing the underlying class

	with Data Aug.	without Data Aug.
AMS	2.7147	2.6681
Threshold	0.9992	0.9991

Table 3: AMS and cut with and without a data augmentationroutine.

Final Classifier Predictions

Figure 5: Class predictions

- DNN proved to be a good method to distinguish signal and background in the context of this problem
- New techniques were implemented successfully:
 - $\rightarrow~$ Learning rate finder
 - $\rightarrow~$ Cosine annealing schedule
 - ightarrow Data Augmentation
- We were able to predict the expected discovery significance of non-resonant di-Higgs production in HL-LHC using the CMS detector with its proposed upgrades
- We are preparing an analysis note describing our methods and results, to be ultimately included in the Yellow Report

Backup Slides

Event selection

Channels and selection

- Three channels: $\mu \tau_h b b$, $e \tau_h b b$, and $\tau \overline{\tau} b \overline{b}$
- $\mu \tau_h b b (e \tau_h b b)$ requires:
 - Exactly: 1 primary muon (electron), 0 veto muons, and 0 veto electrons
 - At least 1 hadronic tau of opposite charge to primary lepton (highest p_T tau chosen in case of multiple)
 - At least 2 *b*-jets (select pair with invariant mass closest to 125 GeV)
- $\tau \, \overline{\tau} \, b \, \overline{b}$ requires:
 - Exactly: 0 veto muons and 0 veto electrons
 - At least 2 hadronic taus of opposite charge (highest p_T taus chosen in case of multiple)
 - At least 2 *b*-jets (select pair with invariant mass closest to 125 GeV)

Object definitions

Lepton	Min. p_T [GeV]	Max. $ \eta $	Max. iso [GeV]
Primary μ	23	2.1	0.15
Primary <i>e</i>	27	2.1	0.1
Veto e/μ	10	2.4	0.3
Hadronic tau	Min. p_T [GeV]	Max. $ \eta $	
$\ell au_h b b$	20	2.3	
au ar au b ar b	45	2.1	

- Jets (b and τ) are taken from the JetsPUPPI collections
- *b* jets are defined using the medium working point with the mid timing detector and required to meet: $p_T > 30$ GeV and $|\eta| < 2.4$
- Missing p_T, muons, and electrons are taken from the PuppiMissingET, MuonLoose, and Electron collections, respectively, i.e. the CHS versions are not used

- *t ī*
- Single Top
- Di-boson ZZ
- Drell-Yan to di-Lepton
- ttH

$$R = 2 * (((s+b) * \log((s+b) * (b+\sigma)/(b^{2} + (s+b) * \sigma))) - (b^{2}/\sigma * \log(1 + (\sigma * s/(b * (b+\sigma)))))) (1) AMS = \sqrt{R}$$
(2)

- *s* and *b*: unnormalized true positive and false positive rates, respectively
- σ : product of background uncertainty and false positive rate

Feature importance

h bb mass	6 6	.1786	212980747223	
t 1 mT	0.1469000	63753	12806	
t 1 mass	6	0.1020	3024595975876	
h tt mass	5 (0.0791	6492968797684	
h tt pT	6	0.0665	8982336521149	
t 0 pT	0.0640179	84271	0495	
diH mT2	0	0.0637	3308822512627	
t 0 mass	6	0.0382	9675018787384	
diH mass	6	0.0345	8205610513687	
h bb pT	6	0.0274	3470259010792	
nJets	0.0240073	357656	95572	
t 0 mT	0.0197216	643254	16088	
diH_pT	0.0188632	273970	782756	
mPT pT	0.0180049	04687	404632	
sT	0.0128600	03858	804703	
b 0 pT	0.0125742	289739	131928	
dShapeP	6	0.0122	89392948150634	
b 1 mass	6	0.0120	03678735345602	
nTauJets	6	0.0102	88166627287865	
nBJets	0.0094310	23709	475994	
b 0 mass	6	0.0054	306150414049625	
aplanorit	tyP 0	0.0048	58777765184641	
t 1 pT	0.0045726	54701	769352	
maxJetPT	0	0.0042	869404423981905	
hT	0.0031436	674554	3032885	
maxJetEta	a 6	0.0028	5836907569319	
minJetEta	a 6	0.0025	71428520604968	
t 0 eta	0	0.0017	155119450762868	
b 0 eta	6	0.0017	146944534033536	
b 1 pT	0.0017146	694453	4033536	
aplanarit	tyP @	0.0017	14285695925355	
maxJetMas	is (0.0017	142856726422907	

meanletPT 0.0014289801707491278 meanJetEta 0.001143265888094902 minJetMass 0.0008575516054406762 centrality 0.0008575516054406762 diH eta 0.0008571428479626775 sphericitvA 0.0008571428246796131 mPT phi 0.0005722460802644492 b 1 phi 0.0005718373227864504 meanJetMass 0.0005718373227864504 t 0 phi 0.0005714285653084517 upsilonA 0.0005714285653084517 spherocityA 0.0005714285653084517 spherocityP 0.0005714285653084517 b 1 eta 0.0002861230401322246 minletPT 0.0002857142826542258 t 1 eta 0.0002857142826542258 h bb phi 0.0002857142826542258 eVis 0.0002857142826542258 diH phi 0.0002857142826542258 dShapeA 0.0002857142826542258 sphericityP 0.0002857142826542258

Figure 6: $\mu \tau_h b b$ channel

Features - s_T ii

Figure 7: $e \tau_h b b$ channel

Features - s_T iii

Figure 8: $\tau \, \overline{\tau} \, b \, \overline{b}$ channel

Features - p_T of μ , e, τ i

Figure 9: $\mu \tau_h b b$ channel

Features - p_T of μ , e, τ ii

Figure 10: $e \tau_h b b$ channel

Features - p_T of μ , e, τ iii

Figure 11: $\tau \, \overline{\tau} \, b \, \overline{b}$ channel

Features - $h_{\tau \, \overline{\tau}}$ mass i

Figure 12: $\mu \tau_h b b$ channel

Features - $h_{\tau \, \bar{\tau}}$ mass ii

Figure 13: $e \tau_h b b$ channel

Features - $h_{\tau \, \overline{\tau}}$ mass iii

Figure 14: $\tau \, \overline{\tau} \, b \, \overline{b}$ channel

Features - $h_{\tau \, \bar{\tau}}$ mass (linear) i

Figure 15: $\mu \tau_h b b$ channel

Features - $h_{\tau \, \bar{\tau}}$ mass (linear) ii

Figure 16: $e \tau_h b b$ channel

Features - $h_{\tau \, \bar{\tau}}$ mass (linear) iii

Figure 17: $\tau \, \overline{\tau} \, b \, \overline{b}$ channel

Features - $h_{b\,\overline{b}}$ mass i

Figure 18: $\mu \tau_h b b$ channel

Features - $h_{b\bar{b}}$ mass ii

Figure 19: $e \tau_h b b$ channel

Features - $h_{b\,\overline{b}}$ mass iii

Figure 20: $\tau \, \overline{\tau} \, b \, \overline{b}$ channel

Features - $h_{b\,\overline{b}}$ mass (linear) i

Figure 21: $\mu \tau_h b b$ channel

Features - $h_{b\bar{b}}$ mass (linear) ii

Figure 22: $e \tau_h b b$ channel

Features - $h_{b\bar{b}}$ mass (linear) iii

Figure 23: $\tau \, \overline{\tau} \, b \, \overline{b}$ channel

Final Classifier Predictions (linear)

Figure 24: Class predictions

References i

- Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee.

Understanding deep neural networks with rectified linear units.

CoRR, abs/1611.01491, 2016.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.

Self-normalizing neural networks.

CoRR, abs/1706.02515, 2017.

Ilya Loshchilov and Frank Hutter.

SGDR: stochastic gradient descent with restarts. *CoRR*, abs/1608.03983, 2016.

- Prajit Ramachandran, Barret Zoph, and Quoc V. Le.
 Searching for activation functions. CoRR, abs/1710.05941, 2017.
 - Leslie N. Smith.

No more pesky learning rate guessing games. *CoRR*, abs/1506.01186, 2015.