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Introduction

• Goal
→ explore the potential of advanced machine learning methods to

project the expected discovery significance of non-resonant

di-Higgs production in HL-LHC using the upgraded CMS

detector
• Task
→ classify events into ”µ τh b b/e τh b b/τ τ̄ b b̄ decay of

di-Higgs” versus ”background”, optimising the approximate

median significance (AMS)
• Data
→ samples produced via Monte Carlo generator of di-Higgs and

several background channels (t t̄ inclusive, SM Higgs, DY to

di-Lepton, di-Boson WW and ZZ, W+jets, vector boson VH,

single top)
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Work Guidelines

• The data previously described was fed to deep neural networks

(DNN) in order to build a classifier

• Several recent methods in DNN were applied to evaluate their

efficiency

• The study was first performed for the Higgs ML challenge

→ simulated LHC collision data with features characterising

events detected by ATLAS of Higgs τ τ̄ decay

• Used not only as a benchmark of the performance of each

model and its optimisations but also to get us familiarised

with DNN concepts
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Deep Neural Network

• Basic classifier:

→ Deep Neural Network with 3 hidden layers, each with 100

neurons

→ Output layer of a single neuron

→ Ensemble of 10 networks is trained on 50% of the data, using

cross-validation, for 65 epochs

• Models pre-trained without sample weights

• Models weighted according to loss on validation data

→ Remaining data is used to test the classifier and optimise the

threshold
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Feature selection

• Train only on the low-level final-state features plus multiplicity
features

→ give the best performance, since the high-level features can be

implicitly computed by the network

→ final set of 52 selected features

• px , py , pz , |p|, mass, energy and transverse mass of the

hadronic tau τh, the muon and di-Higgs: 21 features;

• px , py , pz , |p|, mass and energy of both b-jets, hb b̄ and hτ τ̄ :

24 features;

• px , py , |p| of missing transverse momentum: 3 features.

• sT the scalar sum of ~pmiss
T , muon pT and the transverse energy

of both b-jets and the τh: 1 feature;

• total number of jets, number of b-jets and number of tau-jets:

3 features.

5



Feature selection

Figure 1: hτ τ̄ mass and hb b̄ mass [GeV/c2] (µ τh b b channel)
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Feature selection

Figure 2: sT (µ τh b b channel)
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Evaluation

• Performance was evaluated using the AMS (approximate
median significance):

→ approximation of the significance, more accurate than

signal/
√
background

→ background uncertainty accounts for the statistical uncertainty

and assumes a 10 % systematic uncertainty on normalisation

• cut is required to accept at least 10 background events in

order to ensure correct statistical uncertainties

• Final result uses binned prediction in Higgs Combine, not only

to calculate significance but also limits.
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Improvements

• Three different activation functions tested:

→ ReLU [1]

→ SELU [2]

→ Swish-1 [4]

• Learning rate finder

• Learning Rate schedules: Cyclical LR and Cosine Annealing

for decaying LR

• Data Augmentation (φ and/or axis symmetry)
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Learning Rate Finder
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Learning Rate Finder

• Choosing the right learning rate improves training time and
convergence:

• A tiny learning rate leads to underfitting: the model cannot

adequately capture the underlying structure of the data

• A high learning rate leads to overfitting: the model

corresponds too closely to the training data, and may therefore

fail for additional data
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Learning Rate Finder

• To find the optimal value, the model is trained while the

learning rate is increased from a small value.

• The loss calculated on the validation data is evaluated.

• According to Smith (2015) [5], the optimal learning rate is the

highest at which the loss is still decreasing.
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Learning Rate Finder

Figure 3: Loss on validation data in function of the learning rate

for SELU, using Cross Validation on 10 folds
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Learning Rate Finder - results

• 1× 10−3 chosen as the optimum learning rate

• Three different activation functions were tested:

ReLU SELU Swish-1

AMS 0.9018 1.8417 0.9974

Threshold 0.9906 0.9988 0.9943

Table 1: AMS and cut using each activation function in an

ensemble of 10 classifiers and setting the learning rate to the

optimum value found.

• SELU performed clearly better

• It was the activation function used when performing the

following tests
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Learning Rate Scheduling
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Learning Rate Scheduling

• It’s common to adjust the learning rate during training,

decreasing it once the validation loss becomes flat

• Recent papers (Smith 2015) [5] suggest:

→ cycling between low and high bounds using triangular function

• Loshchilov & Hutter (2016) [3] take this further and introduce

the cosine annealing
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Learning Rate Scheduling

• In cosine annealing schedule the learning rate decays as a

cosine function, restarting once it reaches zero.

Figure 4: Cosine Annealing schedule with multiplicity 2 and

1× 10−3 learning rate
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Cosine Annealing

• A multiplicity factor of 2 and an initial learning rate of

1× 10−3 were used

Const. Learning Rate Cosine Annealing

AMS 1.8417 2.6681

Threshold 0.9988 0.9991

Table 2: AMS and cut using a constant learning rate and a

cosine annealing schedule in an ensemble of 10 classifiers.
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Data Augmentation
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Data Augmentation

• By performing rotations of the events over an angle φ and

axis symmetries, ”new” data can be created, without

changing the underlying class

with Data Aug. without Data Aug.

AMS 2.7147 2.6681

Threshold 0.9992 0.9991

Table 3: AMS and cut with and without a data augmentation

routine.
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Final Classifier Predictions

Figure 5: Class predictions
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Summary

• DNN proved to be a good method to distinguish signal and

background in the context of this problem

• New techniques were implemented successfully:

→ Learning rate finder

→ Cosine annealing schedule

→ Data Augmentation

• We were able to predict the expected discovery significance of

non-resonant di-Higgs production in HL-LHC using the CMS

detector with its proposed upgrades

• We are preparing an analysis note describing our methods and

results, to be ultimately included in the Yellow Report
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Channels and selection

• Three channels: µ τh b b, e τh b b, and τ τ̄ b b̄

• µ τh b b (e τh b b) requires:

• Exactly: 1 primary muon (electron), 0 veto muons, and 0 veto

electrons

• At least 1 hadronic tau of opposite charge to primary lepton

(highest pT tau chosen in case of multiple)

• At least 2 b-jets (select pair with invariant mass closest to

125 GeV)

• τ τ̄ b b̄ requires:

• Exactly: 0 veto muons and 0 veto electrons

• At least 2 hadronic taus of opposite charge (highest pT taus

chosen in case of multiple)

• At least 2 b-jets (select pair with invariant mass closest to

125 GeV)



Object definitions

Lepton Min. pT [GeV] Max. |η| Max. iso [GeV]

Primary µ 23 2.1 0.15

Primary e 27 2.1 0.1

Veto e/µ 10 2.4 0.3

Hadronic tau Min. pT [GeV] Max. |η|

` τh b b 20 2.3

τ τ̄ b b̄ 45 2.1

• Jets (b and τ) are taken from the JetsPUPPI collections

• b jets are defined using the medium working point with the

mid timing detector and required to meet: pT > 30 GeV and

|η| < 2.4

• Missing pT , muons, and electrons are taken from the

PuppiMissingET, MuonLoose, and Electron collections,

respectively, i.e. the CHS versions are not used



Backgrounds used to train

• t t̄

• Single Top

• Di-boson ZZ

• Drell-Yan to di-Lepton

• ttH



AMS - Approximate Median Significance

R = 2 ∗ (((s + b) ∗ log((s + b) ∗ (b + σ)/(b2 + (s + b) ∗ σ)))

− (b2/σ ∗ log(1 + (σ ∗ s/(b ∗ (b + σ)))))) (1)

AMS =
√
R (2)

• s and b: unnormalized true positive and false positive rates,

respectively

• σ: product of background uncertainty and false positive rate



Feature importance



Features - sT i

Figure 6: µ τh b b channel



Features - sT ii

Figure 7: e τh b b channel



Features - sT iii

Figure 8: τ τ̄ b b̄ channel



Features - pT of µ, e, τ i

Figure 9: µ τh b b channel



Features - pT of µ, e, τ ii

Figure 10: e τh b b channel



Features - pT of µ, e, τ iii

Figure 11: τ τ̄ b b̄ channel



Features - hτ τ̄ mass i

Figure 12: µ τh b b channel



Features - hτ τ̄ mass ii

Figure 13: e τh b b channel



Features - hτ τ̄ mass iii

Figure 14: τ τ̄ b b̄ channel



Features - hτ τ̄ mass (linear) i

Figure 15: µ τh b b channel



Features - hτ τ̄ mass (linear) ii

Figure 16: e τh b b channel



Features - hτ τ̄ mass (linear) iii

Figure 17: τ τ̄ b b̄ channel



Features - hb b̄ mass i

Figure 18: µ τh b b channel



Features - hb b̄ mass ii

Figure 19: e τh b b channel



Features - hb b̄ mass iii

Figure 20: τ τ̄ b b̄ channel



Features - hb b̄ mass (linear) i

Figure 21: µ τh b b channel



Features - hb b̄ mass (linear) ii

Figure 22: e τh b b channel



Features - hb b̄ mass (linear) iii

Figure 23: τ τ̄ b b̄ channel



Final Classifier Predictions (linear)

Figure 24: Class predictions
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