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e Goal
— explore the potential of advanced machine learning methods to
project the expected discovery significance of non-resonant
di-Higgs production in HL-LHC using the upgraded CMS

detector
e Task

— classify events into " i1, bb/e T, bb/T7 bb decay of
di-Higgs" versus "background”, optimising the approximate

median significance (AMS)
e Data

— samples produced via Monte Carlo generator of di-Higgs and
several background channels (¢t inclusive, SM Higgs, DY to
di-Lepton, di-Boson WW and ZZ, W+jets, vector boson VH,

single top) Then
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e The data previously described was fed to deep neural networks
(DNN) in order to build a classifier

e Several recent methods in DNN were applied to evaluate their
efficiency

e The study was first performed for the Higgs ML challenge

— simulated LHC collision data with features characterising
events detected by ATLAS of Higgs 7 T decay

e Used not only as a benchmark of the performance of each
model and its optimisations but also to get us familiarised
with DNN concepts



e Basic classifier:
— Deep Neural Network with 3 hidden layers, each with 100
neurons
— Output layer of a single neuron
— Ensemble of 10 networks is trained on 50% of the data, using
cross-validation, for 65 epochs
e Models pre-trained without sample weights
e Models weighted according to loss on validation data
— Remaining data is used to test the classifier and optimise the
threshold



e Train only on the low-level final-state features plus multiplicity
features

— give the best performance, since the high-level features can be
implicitly computed by the network
— final set of 52 selected features

® Dy, Py, Pz, |p|, mass, energy and transverse mass of the
hadronic tau 7, the muon and di-Higgs: 21 features;

® D, Py, Pz, |p|, mass and energy of both b-jets, h,; and h, z:
24 features;

® P« py, |p| of missing transverse momentum: 3 features.

e st the scalar sum of B, muon pr and the transverse energy
of both b-jets and the 75,: 1 feature;

e total number of jets, number of b-jets and number of tau-jets:
3 features.
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Figure 1: h, > mass and h, mass [GeV/c?] (7 bb channel)
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e Performance was evaluated using the AMS (approximate
median significance):
— approximation of the significance, more accurate than

signal /\/background

— background uncertainty accounts for the statistical uncertainty
and assumes a 10 % systematic uncertainty on normalisation
e cut is required to accept at least 10 background events in
order to ensure correct statistical uncertainties

e Final result uses binned prediction in Higgs Combine, not only
to calculate significance but also limits.



Three different activation functions tested:
— ReLU [1]
— SELU [2]
— Swish-1 [4]

Learning rate finder

Learning Rate schedules: Cyclical LR and Cosine Annealing
for decaying LR

Data Augmentation (¢ and/or axis symmetry)



Learning Rate Finder
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e Choosing the right learning rate improves training time and
convergence:
e A tiny learning rate leads to underfitting: the model cannot
adequately capture the underlying structure of the data
e A high learning rate leads to overfitting: the model
corresponds too closely to the training data, and may therefore
fail for additional data
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e To find the optimal value, the model is trained while the
learning rate is increased from a small value.

e The loss calculated on the validation data is evaluated.

e According to Smith (2015) [5], the optimal learning rate is the
highest at which the loss is still decreasing.
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Figure 3: Loss on validation data in function of the learning rate
for SELU, using Cross Validation on 10 folds
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e 1 x 1073 chosen as the optimum learning rate

e Three different activation functions were tested:

ReLU SELU Swish-1
AMS 0.9018 1.8417 0.9974
Threshold 0.9906 0.9988 0.9943

Table 1: AMS and cut using each activation function in an
ensemble of 10 classifiers and setting the learning rate to the
optimum value found.

e SELU performed clearly better
e |t was the activation function used when performing the
following tests
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Learning Rate Scheduling
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e |t's common to adjust the learning rate during training,
decreasing it once the validation loss becomes flat

e Recent papers (Smith 2015) [5] suggest:
— cycling between low and high bounds using triangular function
e Loshchilov & Hutter (2016) [3] take this further and introduce
the cosine annealing
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e In cosine annealing schedule the learning rate decays as a

cosine function, restarting once it reaches zero.
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Figure 4: Cosine Annealing schedule with multiplicity 2 and
1 x 1073 learning rate
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e A multiplicity factor of 2 and an initial learning rate of
1 x 1073 were used

Const. Learning Rate Cosine Annealing
AMS 1.8417 2.6681
Threshold 0.9988 0.9991

Table 2: AMS and cut using a constant learning rate and a
cosine annealing schedule in an ensemble of 10 classifiers.
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Data Augmentation
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e By performing rotations of the events over an angle ¢ and
axis symmetries, "new” data can be created, without
changing the underlying class

with Data Aug. without Data Aug.
AMS 2.7147 2.6681
Threshold 0.9992 0.9991

Table 3: AMS and cut with and without a data augmentation

routine.
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e DNN proved to be a good method to distinguish signal and
background in the context of this problem
e New techniques were implemented successfully:
— Learning rate finder
— Cosine annealing schedule
— Data Augmentation
e We were able to predict the expected discovery significance of
non-resonant di-Higgs production in HL-LHC using the CMS
detector with its proposed upgrades

e We are preparing an analysis note describing our methods and
results, to be ultimately included in the Yellow Report
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Event selection



e Three channels: p7, bb, e, bb, and 77 bb
e uThbb (e1hbb) requires:
e Exactly: 1 primary muon (electron), 0 veto muons, and 0 veto
electrons
e At least 1 hadronic tau of opposite charge to primary lepton
(highest prt tau chosen in case of multiple)
o At least 2 b-jets (select pair with invariant mass closest to
125 GeV)
e 77 bb requires:
e Exactly: 0 veto muons and O veto electrons
e At least 2 hadronic taus of opposite charge (highest pr taus
chosen in case of multiple)
o At least 2 b-jets (select pair with invariant mass closest to
125 GeV)



Lepton Min. pr [GeV] Max. |n| Max. iso [GeV]
Primary 23 2.1 0.15
Primary e 27 2.1 0.1
Veto e/p 10 2.4 0.3

Hadronic tau  Min. pr [GeV] Max. |n|

(1hbb 20 2.3
T7bb 45 2.1

e Jets (b and 7) are taken from the JetsPUPPI collections

e b jets are defined using the medium working point with the
mid timing detector and required to meet: pt > 30 GeV and
In| < 2.4

e Missing pr, muons, and electrons are taken from the
PuppiMissingET, MuonLoose, and Electron collections,
respectively, i.e. the CHS versions are not used



o tt

Single Top
Di-boson ZZ
Drell-Yan to di-Lepton

o ttH



R =2x(((s+ b) = log((s + b) * (b+ a)/(b2 + (s+ b) x0)))
— (b*/o #log(1+ (0 xs/(b* (b+0)))))) (1)

AMS = VR (2)

e s and b: unnormalized true positive and false positive rates,
respectively

e ¢: product of background uncertainty and false positive rate



h_bb_mass 0.1786212980747223
t1mT 0.14690006375312806

t_1 mass 9.10203824595975876
h_tt mass 0.07916492968797684
h_tt_pT 0.06658982336521149
t 0 pT ©0.0640179842710495

diH mT2 0.06373308822512627
t_0_mass 0.03829675018787384
diH_mass 0.03458205610513687
h_bb pT 0.02743470259010792
nlets 0.02400735765695572

t emT 0.01972164325416088

diH pT  ©.018863273970782756

mPT_pT  ©0.018004904687404632

sT 0.012860003858804703

b 6 pT 0.012574289739131928
dShapeP 0.012289392948150634
b 1 mass 0.012003678735345602
nTaulets 0.010288166627287865

nBlets ©0.00943102370947599%4

b @ mass 0.0054306150414049625
aplanorityP ©.004858777765184641
t 1 pT 0.004572654701769352

maxJetPT 0.0042869404423981905
hT 0.0031436745543032885

maxJetEta 0.00285836907569319
minJetEta 0.002571428520604968
t 0 _eta 0.0017155119450762868
b @ eta 0.0017146944534833536
b 1 pT  ©.0017146944534033536

0.001714285695925355
0.0017142856726422907

aplanaritypP
maxJetMass

meanJ]etPT 6.0014289801707491278
meanJetEta 9.001143265888094902
minletMass 0.0008575516054406762
centrality 8.0008575516054406762
diH_eta 0.0008571428479626775
sphericityA 0.0008571428246796131
mPT phi 8.0005722460802644492
b 1 phi 0.0005718373227864504
meanJetMass 6.0085718373227864504
t @ phi 9.0005714285653084517
upsilonA 0.0005714285653084517
spherocityA 6.0005714285653084517
spherocityP ©.0005714285653084517
b 1 eta 0.0002861230401322246
minJetPT 6.0002857142826542258
t 1 eta ©.0002857142826542258
h_bb_phi 0.0002857142826542258
eVis 0.8002857142826542258

diH_phi 9.0002857142826542258
dShapeA 0.0002857142826542258
sphericityP ©.0002857142826542258
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Figure 7: eT, bb channel
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Figure 8: 77 b b channel
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Figure 10: e, b b channel
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Figure 11: 77 b b channel
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Figure 13: e, b b channel
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Figure 14: 77 b b channel
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Figure 16: e, b b channel
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Figure 18: p 7 b b channel
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Figure 19: e, b b channel
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Figure 20: 77 bb channel



1 d{A0)

A0 dm

0.016

0.014

0.012

0.010

0.002

gerennnnnl

ww

SM_Higgs

VH

7z

tH

Wrlets

DY

Single_Top

T

Signal (HH non Resonant)

200 300 400
h_bb_mass

Figure 21: p7h b b channel
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Figure 24: Class predictions
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