PROBING QGP WITH B-JETS

João Bravo Francisco Lelewell

ATLAS Group

Helena Santos

Rui Pereira

July - September 2018

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Heavy Ion Physics

- Heavy Ion central collisions form a plasma of quarks and gluons (QGP)
- It's possible to study QGP through modifications in the characteristics of particles when they pass through it
- Bottom quarks are the least affected in QGP

• Challenge:

Heavy Ion collisions have more underlying event than p+p collisions

 Identification of bottom quark jets using multivariable method → Boosted Decision Trees

• Study of the kinematic distributions of the b-jets: transverse momentum p_T , pseudorapidity $|\eta|$, azimuthal angle ϕ

• Comparison with the distributions of light quark jets

• Systematic study of performance

Kinematic Distributions

Clear distributions

p+p Monte Carlo Sample

Kinematic Distributions

Lack of statistics

Pb+Pb Monte Carlo Sample

BDT Input Variables

BDT Results - Sensitivity to p_T

BDT Results - Sensitivity to collision centrality

Less central \Longrightarrow better separation

BDT Output - centrality ∈]40, 80] %

Efficiency vs Background Rejection

Performance: BDT vs earlier methods

Consistently better performance than all previous methods!

BDT Performance

Sensitivity to p_T and η

BDT Performance

Sensitivity to Collision Centrality

- Better performance on p+p MC Sample \longrightarrow obviously!
- Lower collision centrality \Longrightarrow better performance
- Pb+Pb MC Sample dominated by central collisions

Jet Classification in p+p and Pb+Pb p_T Distribution

- BDT Working point: 50% signal efficiency
- Tunning of input variables optimized for p+p (Higgs $\rightarrow b\bar{b}$ analysis)
- Input variables and BDT itself should be optimized for Pb+Pb

Conclusions

- BDT method developed is better than previous b-tagging methods
- Bottom quarks harder (but still possible) to identify in central collisions
- Kinematic region with best performance: peripheral collisions with $|\eta| < 2$ and $p_T \in [140, 180]$ GeV
- Study limited by statistics in Pb+Pb Monte Carlo collisions
- Next step: application of BDT to real data

Negerami, A. (2012), Jet quenching in relativistic heavy ion collisions 📎 at the LHC, Columbia University

Ne ATLAS Collaboration (2016), Performance of b-jet identification in the ATLAS experiment, CERN

Toolkit for Multivariate Data Analysis with ROOT - Users Guide (2017).https://root.cern.ch/download/doc/tmva/TMVAUsersGuide.pdf

Backup

p_T Distribution with $|\eta|$ p+p MC Sample

p_T Distribution with $|\eta|$ Pb+Pb MC Sample

p_T Distribution with Collision Centrality Pb+Pb MC Sample

*p*_T Distribution BDT Result on p+p MC Sample

BDT Efficiency

Various Training->Application Combinations

