Search for exclusive top Quark pair production

06/09/2018

BEATRIZ RIBEIRO LOPES

Pedro Silva, Michele Gallinaro, Jonathan Hollar

Exclusive $t\overline{t}$ production

- When reconstructing a tt
 trouble reconstructing the full system
 (due to neutrinos etc)
- Exclusive production would allow the full reconstruction using the kinematics of the escaping protons

Independent measure of the mass Great resolution Can be used to look for new physics

 SM cross section predictions are very small (< 1fb⁻¹), no previous searches

(PRECISION PROTON SPECTROMETER)

- LHC magnets bend scattered protons outside of the beam envelope
- Roman Pots placed a few mm from the beamline
- Detect protons at about ± 200 m from IP5

The PPS detector

- Silicon strips and 3D pixel detectors
- Used one strip and one pixel from each arm

Silicon strip detector

3D pixel detector

There is often more than one track in each detector!

- From each track we get the momentum loss of the proton
- We can reconstruct the mass and rapidity of the system

$\boldsymbol{\xi}$ Distributions

• Expected range: $0.02 \le \xi \le 0.2$ (but some events are observed above due to misresconstruction)

• Acceptance in both arms is asymmetric

$t\overline{t}$ Pre-selection

- Using data from 2017, sqrt(s)=13 TeV
 L = 41.4fb⁻¹ (but only 18.7fb⁻¹ with calibrated pixels)
- Looking at dilepton events

- Require:
 - 2 leptons (not Z->II)
 - ∘ M_{II}> 20 GeV
 - $\geq 1 \text{ jet}$ (p_T>20 GeV & | η |<4.7)
 - ≥1 b-jet
 (p_T>30 GeV & |η|<2.5)
 - M_{lb}<160_GeV

MID

• Events failing cuts are categorized separately

PRE-SELECTION PLOTS IN DATA

Z→II dominates

$\mathsf{Pre-Selection}\ \mathsf{Plots}$ in data

$\mathsf{Pre-Selection}\ \mathsf{Plots}$ in data

No correlation is observed...

As expected, because exclusive cross sections are very low and the selection is still very loose at this point...

ESTIMATE ACCEPTANCE OF RP

	Surviving events		
Initial number of simulated events	100%		
Events with 2 leptons	3.70%		
Events in RP acceptance	1.01%	~2176	

The background comes mainly from real ttbar events combined with random pileup protons

 Get the histograms of the number of forward tracks (pixel 0 and 1) and the ξ distribution

For each event:

- Generate a random number of tracks in each pixel
- For each track generate a random **ξ**
- For all combinations, compute a "fake" mass of the dilepton system
- If this "fake" mass is between 300 and 600 GeV (ttbar threshold region), count the event
- Divide by total number of events with $300 < M_{RP} < 600$

Result: fraction of fake coincidences = 0.03

FINAL SELECTION

Require: 2 leptons & M_II > 20 GeV, just pixels

Separate categories:

- ≥1 jet
- ≥1 b-jet
- $M_{lb} < 160 \text{ GeV} (\text{low } M_{lb})$
- $300 \text{ GeV} < M_{RP} < 600 \text{ GeV} (M_{RP} \text{ cut})$
- Pass "fake M_{RP}" generator (fake M_{RP})

- Same flavour leptons (ee or μμ)
- Opposite flavour (eµ)
- Z-peak (same flavour and mass of the dilepton around the Z mass)

Relevant Plots after Final selection

• Category: ≥1 b-jet, Opposite flavour

Relevant Plots after Final selection

• Category: low M_{lb}, Opposite flavour

• Used the algorithm in https://arxiv.org/abs/1305.1878 to try to reconstruct the kinematics of the central system for the selected events

• No correlation is observed... (region still dominated by QCD ttbar)

Conclusion of the 2 weeks work at CERN:

- Outlined the start of a hunt for exclusive ttbar production
- Dileptons chosen as starting point due to its purity
- Defined selection categories for signal and control regions
- Established method to determine combinatorial background
- Signal acceptance estimated with MC
- Reconstructed kinematics in the central and forward regions

Next steps (to be implemented in the next days):

- Implement statistical analysis
 (sneak preview in the backup for the more curious)
- Derive an upper limit on the cross section

THANK YOU FOR YOUR ATTENTION

YIELDS

data_obs	9012.0	4048.0	866717.0	528106.0	3609025.0
total	2967.0	1586.8	678692.0	531465.8	2928507.4
others	29.6	35.2 34.6	9549.8	11777.4	11360.7
qcdTT	1171.4	1457.0	402792.0	502913.1	111034.4
	SR_SF	SR_0F	ttCR_SF	ttCR_0F	dyCR
Signal acceptance is 0.01 low mlb selection lumi x Acc x eff = Background Roman pot fake rat					

• (data_observed in the signal regions is arbitrary)

- We perform a fit to the absolute cross section of pp->ttpp with 5 categories
 - 2 signal regions ($M_{RP} \in [300,600], H_T = 0$)
 - \circ 3 control regions (no cut in M_{RP})
- Main systematic uncertainties included
- σ < 900 fb

Contour of the likelihood for the scale factor	Likelihood scan results for the signal at
for qcdTT and DY processes which are fit	expectation level for a xsec=900fb scenario.
using the dedicated control regions. The point	The line intersects the likelihood at the
marks the fitted values.	boundaries of the 68% CI.

