Estágios de Verão

Análise de Dados em Física de Altas Energias e Partículas Cósmicas

Guillaume Domingues | Manuel Lima | Miguel Carvalho

Universidade de Coimbra | LIP

Table of contents

- 1. Introdução / Objectivos
- 2. Bosão de Higgs
 - Standard Model

Decaimento H -> ZZ

Análise dos Dados

- 3. FCNC do quark top
- 4. Decaimento Beta Duplo (sem emissão de neutrinos) Neutrinoless Double Beta Decay

Detector LZ

Cortes efectuados e espectro de energia

5. Conclusões e Trabalho Futuro

Introdução / Objectivos

Objectivos :

- Análise dos dados do ATLAS para detectar o bosão Higgs
- Análise dos dados do ATLAS para detectar a FCNC do quark top
- Análise da radiação de fundo e do decaimento beta duplo sem emissão de neutrinos do detector LZ

Bosão de Higgs

Standard Model of Elementary Particles

Figura 1: Gráfico do Modelo Padrão da Física.

Figura 2: Decaimento do Higgs para ZZ.

Figura 3: Histograma da massa dos 4 leptões sem cortes efectuados.¹

¹Este gráfico não está normalizado.

4	\leq	leptões	\leq	4
0	\leq	jactos	\leq	10
20	\leq	p⊤ leptão 1	\leq	10000
15	\leq	p⊤ leptão 2	\leq	10000
10	\leq	p⊤ leptão 3	\leq	10000
5	\leq	m_{l_+l}	\leq	10000
50	\leq	m_{Z1}	\leq	106
12	\leq	m_{Z2}	\leq	115

Tabela 1: Cortes efectuados nos dados.

Figura 4: Histograma da massa dos 4 leptões após efectuar cortes apropriados.

Figura 6: Histograma da massa dos 4 leptões após efectuar cortes apropriados.²

²Esta figura é igual à figura 4, apenas foi repetida para ter uma visão lado a lado com os resultados do CMS.

FCNC do quark top

Figura 4: Diagramas de feynman do decaimento FCNC do quark top.

FCNC

Figura 5: Esquema do mecanismo GIM.

FCNC

Figura 6: Histograma dos dados para a detecção de FCNC do quark top.³

³Este gráfico não está normalizado.

Decaimento Beta Duplo (sem emissão de neutrinos)

NDBD

Figura 7: Esquema do decaimento beta duplo sem emissão de neutrinos.

A experiência LZ procura o decaímento NDBD no isótopo ¹³⁶Xe. Este decaimento liberta 2458 keV.

Detector LZ

Figura 8: Esquema do detector LZ usado para a deteção de WIMPs.

Figura 9: Corte (R²,Z) do detector LZ. Figura 10: Corte (X,Y) do detector LZ

Figura 11: Espectro de energia perto da ROI (region of interest)⁴.

A região de interesse é 2458 \pm 2 σ , considerando uma resolução de energia de 1%

⁴Estes dados são provenientes de uma simulação de uma run de 1000 dias do detector LZ.

Conclusões e Trabalho Futuro

- Confirmação da existência do bosão de Higgs (σ = 5, 1), com a massa esperada (\simeq 125 GeV);
- · Não observámos sinal na análise da FCNC;
- Conseguimos identificar os picos de ²³⁸*U* e ²³²*Th* no espectro de energia da radiação de fundo.

- Fazer um estudo da radiação de Drell-Yan;
- Optimizar os cortes para o estudo do NDBD e automatizar a optimização.