Probing the H $\rightarrow b\,\bar{b}\,\gamma$ vertex using MVA at ATLAS/LHC

Alexandre Santos

Supervisors: Rute Pedro, Ricardo Gonçalo In collaboration with Aidan Kelly

- The study of the Higgs boson and its couplings with different particles is fundamental not only to test the predictions made by the Standard Model but also to the pursuit of new physics.
- As such, in this project we focused on the $H \rightarrow b \, \bar{b} \, \gamma$ channel in regards to possible anomalous couplings.
- In this case it was used Multivariate Analysis in order to exploit the relations of different variables and optimize the signal/background separation process for this channel.

Signal and Background diagrams

Figure: $H \rightarrow b \, \bar{b} \, \gamma$ effective vertex

Figure: Background - $bb\gamma$

Figure: Background - bbj

bbj Figure: Background - $jj\gamma$

Figure: Background - jjj

Diagram of the project

Selected cuts method - cuts used

- At least one photon
- Has a photon with a p_T of at least 80 GeV
- At least two jets
- At least two b-tagged jets
- $\Delta R_{b\gamma}$ minimum less than 1.5
- Sphericity of at least 0.02
- Higgs_mass within 100 and 135 GeV

Significance						
$\mathcal{L} = 300 {\rm fb^{-1}}$ $\mathcal{L} = 1000 {\rm fb^{-1}}$ $\mathcal{L} = 3000 {\rm fb^{-1}}$						
Selected cuts	0.461	0.842	1.46			

Input variable: deltaRbgamma

MVA - Method used

2

イロト イヨト イヨト イヨト

MVA - Results

Alexandre Santos

7 / 17

Significance Table for different Luminosities and configurations

BDT Configuration	$\mathcal{L}=300\mathrm{fb}^{-1}$	$\mathcal{L}=1000\mathrm{fb}^{\text{-}1}$	$\mathcal{L}=3000~{\rm fb}^{-1}$
Selected cuts	0.461	0.842	1.46
1500 Trees; Tree depth = 2	0.592	1.08	1.87
1000 Trees; Tree depth = 4	0.645	1.18	2.04
1000 Trees; Tree depth = 2	0.571	1.04	1.81
400 Trees; Tree depth = 2	0.493	0.899	1.56
400 Trees; Tree depth = 4	0.611	1.11	1.93
400 Trees; Tree depth = 6	0.620	1.13	1.96

Table: Max significance values for the selected cuts method and for different BDT configurations across three Luminosities

- We used Boosted Decision Trees in order to optimize the signal and background separation in the $H \rightarrow b \, \bar{b} \, \gamma$ process;
- By performing a Multivariate Analysis we managed to get up to an increase of 40 % in significance (for 300 fb⁻¹);
- The best BDT configuration proved to be using 1000 Trees and Tree depth = 4;
- Due to such results we can conclude that using this method can be a powerful tool in the search of this type of events in the future.

Boosting H->bb at high p_{T_V} with MVA in ATLAS at LHC

Vânia Nunes

Supervisors: Rute Pedro Ricardo Gonçalo

Introduction

- H->bb is the largest branching ratio of the Higgs decay (57.7%), for mHiggs=125GeV
- This decay's measurement is fundamental to determine the Higgs boson decay width and couplings, and to confirm or reject SM hypothesis
- bb decay of Higgs is one of the most challenging searches at the LHC, since the bb background cross-section is orders of magnitude superior to the Higgs production cross-section.
- After years of search, it's measurement was announced in 28 Aug 2018
- Future: study Higgs boson at high pT
 - a. Sensitive to new physics

Signal

- \rightarrow 2 isolated leptons
- → Same flavor leptons
- \rightarrow 2 b-jets

Reconstruction of the H->bb signal

BOOSTED, anti-kt R=1.0 algorithm

Objectives

Optimize the Higgs boson selection at high pT, for pTZ>250GeV

-Study significance of events reconstructed in the resolved and boosted regimes;

-Compare this methods and try to improve the significance of our results, by applying a multivariate method (BDT) to the simulations.

-Compare MC simulations with data obtained from the ATLAS detector in 2017

Main source of background

a) ttbar->WW->II

b) Z+jets (B, C,L)

Regime RESOLVED and BOOSTED

Multivariate analysis Applied after requiring Z->ll selection and pTV>250GeV;

BDT WITH NOMINAL BDT WITH NOMINAL AND **REGIME RESOLVED REGIME BOOSTED** VARIABLES FAT JET VARIABLES nBJets nominal variables nJets MET (missing fatj1phi transverse energy) fatj1mass pTL1, PTL2 pTB1 and pTB2 fatj1Tau21 nFatJets mLL mBB fatj1C2 nbTagsInFJ flavL1, flavL2 dEtaBB (Difference • fatj1D2 (number of chargeL1, charge of pseudorapidity) b-subjets inside fat L2 dRBB (Radial jet) pTV distance) fatj1xbbResult nJets dEtaVBB (used to identify etaJ3, etaB1, hadronically etaB2 decaying boosted pTB1, pTB2 bosons) dRBB (Radial distance)

BDT trained with 400 trees and depth=4

Significance

 $Signal/\sqrt(Background)$

	Efficiency (%)	Significance
Initial Cuts $(Z - > ll + pTV > 250GeV)$	100	0,01
Resolved	19,62	0,31
Boosted	19,14	0,43
BDT with nominal variables	20,00	0,96
BDT with nominal+fatjets variables	20,00	0,95

Table 1: For a signal efficiency of approximately 20%

	Efficiency (%)	Significance
BDT with nominal variables	50	0,59
BDT with nominal+fatjets variables	50	0,59

Conclusion

- Implemented and studied different methods of reconstructing the ZH->ll bb signal at high pT
- Significances obtained from BDT's are much better that any other obtained from other analysis (RESOLVED or BOOSTED);
- Significances obtained from BDT with nominal variables and BDT with fat jet variables are very similar, for both efficiencies of 20% and 50%

Optimizing double Higgs decay with MVA at FCC luminosities

Filipe Barroso

Supervisores:

Rute Pedro Ricardo Gonçalo

Com apoio de:

Ana Luísa Carvalho

Why study this process?

- It involves a Higgs cubic self-interaction. It's detection allows the measure of cubic coupling constant.
- FCC-hh might be able detect a double Higgs decaying to $b\overline{b}b\overline{b}$, which is a signature of this process.

Map of the Future Circular Collider (FCC). It would achieve a CM energy collision of 100 TeV.

Signal and Backgrounds

- $H \rightarrow b\overline{b}$ decay occurs 57,7% of the time.
- B-quark hadronization is well identified.
- Higgs produced with very high Pt.

ttī jets

QCD double jets

Pt leading jet > 200 GeV Pt subleading jet > 200 GeV

bbbb production

Backgrounds

BDT analysis

TMVA overtraining check for classifier: BDT

- Invariant mass of leading e subleading jets;
- Transverse Momentum of leading and subleading jets
- The vector sum of the projection of each jet; momentum in the transverse plane;
- τ_{21} of leading and subleading jets;
- Second Fox-Wolfram momentum of leading and subleading jets.

5 out of 9

6 out of 9

⁷ out of 9

(1/N) dN / dx

Conclusion

- Investigated optimization of (fast simulation) analysis of $HH = b\overline{b}b\overline{b}$ at FCC using BDT.
- Existence of categories in the signal data and identification with topological and kinematic variables.
- Improvement in the previous significance using the MVA Cuts method (around 7).

Probing the H $\rightarrow b\,\bar{b}\,\gamma$ vertex using MVA at ATLAS/LHC

Alexandre Santos

Supervisors: Rute Pedro, Ricardo Gonçalo In collaboration with Aidan Kelly

Extra slides

æ

イロト イヨト イヨト イヨト

- numbjets;
- numofbjets;
- sphericity;
- jetPT0;
- jetPT1;
- pTb1;
- pTb2;
- bphotonPT;
- PT_All;
- PT_All_else_jet;

- Higgs_mass;
- pTHiggs;
- delR_bjets;
- deltaphiHiggsother;
- deltaetaHiggsother;
- elsejetPT;
- DelPhi_bb;
- DelEta_bb;
- twistangle;
- delRgammamin;

< 67 ▶

Cuts	$H \rightarrow b \overline{b} \gamma (\mathbf{d}_1 = 5, \mathbf{d}_2 = 5)$	$H \rightarrow b \overline{b} \gamma (\mathbf{d}_1 = 6, \mathbf{d}_2 = 0)$	jjj	jjγ	b b photon	b b j	SM vertex	\sum Backgrounds
Without Cuts	280225	966875	2199314	4695958	1141671	1036985	600000	9073928
At least one photon	223871	772370	2195393	4609115	829425	1024996	461491	8658929
Has a photon with a $p_{\rm T}$ of at least 80 GeV	24146	83509	562712	1589123	126269	250497	57110	2528601
At least two jets	20692	71761	561719	1496542	120820	249569	50863	2428650
At least two b-tagged jets	1772	5895	3083	5064	20864	56090	11080	85101
DelRbgamma minimum less than 1.5	1225	4149	369	822	4787	2911	2862	8889
Sphericity of at least 0.02	1192	4055	347	745	4550	2817	2809	8459
Higgs_mass within 100 and 135 GeV	516	1802	15	35	41	34	1131	125

Table: Number of events that pass each cut

Cuts	$H \rightarrow b \bar{b} \gamma \ (\mathbf{d}_1 = 5, \mathbf{d}_2 = 5)$	$H \rightarrow b \overline{b} \gamma (\mathbf{d}_1 = 6, \mathbf{d}_2 = 0)$	jjj	jjγ	b b photon	b b j	SM vertex
Without Cuts	100 %	100 %	100 %	100 %	100 %	100 %	100 %
At least one photon	79.9 %	79.9 %	99.8 %	98.2 %	72.7 %	98.8 %	76.9 %
Has a photon with a $p_{\rm T}$ of at least 80 GeV	10.8 %	10.8 %	25.6 %	34.5 %	15.2 %	24.4 %	12.4 %
At least two jets	85.7 %	85.9 %	99.8 %	94.2 %	95.7 %	99.6 %	89.0 %
At least two b-tagged jets	8.56 %	8.21 %	0.549 %	0.34 %	17.3 %	22.5 %	21.8 %
DelRbgamma minimum less than 1.5	69.1 %	70.4 %	12.0 %	16.2 %	22.9 %	5.19 %	25.8 %
Sphericity of at least 0.02	97.3 %	97.7 %	94.0 %	90.6 %	95.0 %	96.8 %	98.2 %
Higgs_mass within 100 and 135 GeV	43.3 %	44.4 %	4.32 %	4.70 %	0.90 %	1.21 %	40.3 %

Table: Percentage of events that pass each cut

Alexandre Santos

æ

- 4 回 ト 4 回 ト 4 回 ト

These were the BDT parameters used:

- NTrees: 1500/1000/400 (Number of trees used);
- **MinNodeSize:** 2.5 % (Minimum percentage of training events required in a leaf node);
- **BoostType:** Grad (Type of boost applied to the forest, in this case gradient type boost);
- Shrinkage: 0.10 (Learning rate for GradBoost algorithm);
- **UseBaggedBoost:** (Use only a random subsample of all events for growing the trees in each iteration);
- **BaggedSampleFraction:** 0.5 (Relative size of bagged event sample to original size of the data sample);
- nCuts: 20 (Number of grid points in variable range used in finding optimal cut in node splitting);
- MaxDepth: 2/4/6 (Max depth of the decision tree allowed).

- (回) (三) (=

Correlation Matrix (signal)

Correlation Matrix (background)

(日) (同) (三) (三)

э

Variable importance Table

Rank	:	Variable	:	Variable Importance
1 2	:	deltaRbgamma jetPT1	:	1.143e-01 6.804e-02
4	÷	Higgs_mass	÷	5.938e-02 5.876e-02
6	:	sphericity	:	5.540e-02 5.429e-02
, 8 9	÷	pTb1	÷	5.311e-02 5.197e-02
10 11	÷	numofbjets DelPhi bb	÷	5.178e-02 5.023e-02
12	:	PT_All_else_jet	:	4.721e-02 4.591e-02
14 15	:	pTb2 twist angle	÷	4.212e-02 3.952e-02
16 17	:	photonPT delphiHiggsother	:	3.890e-02 3.888e-02
18 19	:	deletaHiggsother PT_All	:	3.856e-02 3.173e-02

æ

イロト イヨト イヨト イヨト

Significance Table for different Luminosities and configurations

BDT Configuration	$\mathcal{L}=300{ m fb}^{-1}$	$\mathcal{L}=1000~{ m fb}^{-1}$	$\mathcal{L}=3000~{\rm fb}^{-1}$
Selected cuts	0.461	0.842	1.46
1500 Trees; Tree depth = 2	0.592 / [0.494]	1.08 / [0.902]	1.87 / [1.56]
1000 Trees; Tree depth = 4	0.645 / [0.576]	1.18 / [1.05]	2.04 / [1.82]
1000 Trees; Tree depth = 2	0.571 / [0.499]	1.04 / [0.910]	1.81 / [1.58]
400 Trees; Tree depth = 2	0.493 / [0.426]	0.899 / [0.778]	1.56/ [1.35]
400 Trees; Tree depth = 4	0.611 / [0.490]	1.11 / [0.895]	1.93 / [1.55]
400 Trees; Tree depth = 6	0.620 / [0.570]	1.13 / [1.03]	1.96 / [1.79]

Table: Max significance values / significance for a signal efficiency of 0.5 (in brackets) for the selected cuts method and for different BDT configurations across three Luminosities

Boosting H->bb at high p_{T_V} with MVA in ATLAS at LHC

Vânia Nunes

Supervisors: Rute Pedro Ricardo Gonçalo

BACKUP

Cut Flow Table

RESOLVED (normalized)	qqZllHbb	ggZllHbb	qqWlvHbbJ	qqZvvHbbJ	ttbardilep	ttbarnonallhad
Without cuts	1 756	1 154 058	35 476	31	3 310 150	3 822 820
2 leptons with $p_T > 7$ Gev, 1 with $p_T > 27$ GeV	582	582	58	0	1 084 060	1 247 720
$81 \le m_{LL} \le 101(GeV)$	505	505	5	0	142 318	158 967
Same lepton Flavour	505	505	2	0	71 304	79 675
Opposite lepton charge	500	500	1	0	70 321	75 093
$pT_V > 250Gev$	25	25	0	0	120	179
At least two jets	24	24	0	0	120	177
$p_T > 20 GeV$ for $ \eta < 2.5$ and $p_T > 30$ for $2.5 < \eta < 4.5$	17	17	0	0	108	166
Exactly two b-tagged jets	6	6	0	0	30	35
Leading b-tagged jet with $p_T > 45 GeV$	6	6	0	0	29	34
After applying p_{TV} and dR_{BB} conditions	5	5	0	0	6	5

Table: Number of events normalized that pass each cut

Cut Flow Table

RESOLVED (normalized)	Zjets	ZBjets	ZjetsC	ZjetsL	VVfulllep
Without cuts	294 895	3 234 460	5 342 940	16 280 300	104 597
2 leptons with $p_T > 7$ Gev, 1 with $p_T > 27$ GeV	98 079	1 065 410	1 757 820	5 355 030	34 336
$81 <= m_{LL} <= 101(GeV)$	80 220	890 098	1 441 270	4 444 080	5 891
Same lepton Flavour	80 181	889 622	1 440 810	4 443 180	3 783
Opposite lepton charge	79 123	882 425	1 428 870	4 405 560	3 742
$pT_V > 250Gev$	16 425	7 136	11 429	32 235	109
At least two jets	15 955	6 437	10 176	26 379	102
$p_T > 20 GeV$ for $ \eta < 2.5$ and $p_T > 30$ for $2.5 < \eta < 4.5$	13 819	4 503	7 033	15 909	67
Exactly two b-tagged jets	255	361	20	1	0
Leading b-tagged jet with $p_T > 45 GeV$	243	335	18	1	0
After applying p_{TV} and dR_{BB} conditions	77	125	6	1	0

Table: Number of events normalized that pass each cut

Event Selection - RESOLVED

Extra cut made for pTV>250 GeV

To make the Z boson selection, it was required:

- 2 leptons, both with pT>7GeV, and at least one with pT>27GeV
- Invariant mass of leptons correspondent to Z boson 81 < mLL <101 (GeV)
- Same lepton flavor
- Opposite lepton charge

Invariant mass of two leptons

Event Selection - BOOSTED

For this regime, it was required:

- 1 fat jet
- 2 b-tagged jets in fat jet
- Variable xbb_result=1

 xbb_result is a variable resultant from Xbb Tagger algorithm used to identify hadronically decaying boosted bosons

Ranking of the most important variables used in BDT

100	Rank	:	Variable	:	Separation
:	1	:	nbJets	:	5.512e-01
:	2	:	fatj1xbbResult	:	3.226e-01
:	3	:	mBB	:	2.537e-01
:	4	:	dRBB	:	1.603e-01
:	5	:	fatj1m	:	1.414e-01
:	6	:	fatj1UngroomedTrackWidth1000	:	1.247e-01
2	7	23	fatj1UngroomedTrackWidth500	2	1.220e-01
23	8	23	nbTagsInFJ	23	1.179e-01
;	9	:	dEtaBB	3	9.055e-02
:	10	:	pTB1	1	7.134e-02
:	11	:	pTB1	1	7.134e-02
:	12	:	ptL2	:	7.119e-02
:	13	:	dEtaVBB	:	6.904e-02
:	14	:	fatj1Tau21	:	6.587e-02
2	15	23	pTB2	\mathbf{S}	5.403e-02
2	16	23	pTB2	23	5.403e-02
:	17	:	fatj1D2	;	5.354e-02
:	18	:	fatj1NumTrkPt1000PV	:	5.068e-02
:	19	:	fatj1C2	:	4.574e-02
:	20	:	fatj1NumTrkPt500PV	:	4.483e-02
:	21	:	MET	:	3.269e-02
:	22	:	etaB2	:	2.536e-02
2	23	23	nJets	23	2.448e-02
1	24	13	ptL1	13	1.726e-02
5	25	:	рТЈЗ	;	6.547e-03
:	26	:	nFatJets	:	5.608e-03
:	27	:	fatj1pt	:	5.118e-03
:	28	:	fatjleta	:	5.001e-03
:	29	:	fatj1phi	:	4.982e-03

BDT nominal

BDT nominal+fatjet variables

Optimizing double Higgs decay with MVA at FCC luminosities

Filipe Barroso

Supervisores:

Rute Pedro Ricardo Gonçalo

Com apoio de:

Ana Luísa Carvalho

Backup

Pt < 900 GeV; SDm > 90 GeV

Pt < 900 GeV; SDm < 90 GeV

Boosted Decision Trees

- We've used this Multivariate Method to separate the signal from the background and assess which input variables were more relevant in such endeavour.
- Each successive decision tree trains more diligently the events where the separation is harder to evaluate.

