

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Measurement of $H \rightarrow \tau \tau$ with a multivariate analysis tool

Dr. Pedrame Bargassa

Luís Sintra, Ricardo Cipriano and Tomás Alvim

Outline

- I. Higgs production & main background
- II. Neural networks and categorization of events
- III. Preselection cuts
- IV. Confirmation of previous results
- V. 1st new approach: N(btag)=0
- VI. 2nd new approach: new NN
- VII. Conclusions

Higgs production processes

gluon gluon fusion (ggH)

Cross section: 12.6 pb

vector boson fusion (qqH/VBF)

Cross section: 0.5 pb

Higgs decay channels

Pre-selection cuts

The pre-selection cuts applied on events that are going to be analyzed by the NN are meant to diminish as much background as possible, while leaving enough efficiency for $H \rightarrow \tau\tau$

- Pt (muon) > 20
- Pt (electron) > 25
- Pt (tau): > 20 for et & mt channels; > 40 for tt channel
- Min (mT(l1,MET) , mT(l2,MET)) < 50
- 2 opposite charge leptons

Neural networks: Concept

The measurement of the H \rightarrow $\tau\tau$ decay is being made with a neural network (NN)

Neural networks: Training

NN response

Process categorization

Our multi-class NN is trained to distinguish signal from background and categorizes them in different classes.

Background Signal

et/mt		
Classes	Processes	
mice	EWK	
misc	vv	
w	w	
++	LTT	
	TTT	
711	ZL	
211	ZJ	
SS	QCD	
ztt	ZTT	
qqH	qqh	
ggH	ggh	

tt		
Classes	Processes	
	EWK	
	VV	
misc	W	
	TTT	
	ZL	
	ZJ	
noniso	QCD	
ztt	ZTT	
qqH	qqh	
ggH	ggh	

Event categorization

The multi-class NN attributes a score for each class which represents the estimated probability of that event to belong in that given class.

For each event, we define the class with highest NN score to be the predicted class, which might be different from the true class.

Confusion matrix

A confusion matrix tells how much the multi-class NN is confused when classifying a true process Y in the predicted process X.

This is an example of a purity matrix.

				Predicte	ed class					
	ggh .	dqh	ztt -	Z	×	Ħ	SS ·	nisc -		
misc -	0.76	4.36	0.00	0.01	0.05	0.06	0.03	1.00	- 2	2
SS ·	6.66	12.94	0.11	0.26	0.58	0.14	1.00	2.47	- 1	4
tt	0.86	7.38	0.00	0.00	0.04	1.00	0.04	3.33	- (6
A True o	6.72	8.89	0.05	0.17	1.00	0.01	0.41	2.56	- (8
class II2	7.11	3.76	0.03	1.00	0.17	0.00	0.10	0.32	- :	10
ztt	- 17.58	13.96	1.00	0.31	0.24	0.02	0.18	2.22	- :	12
ddµ.	0.05	1.00	0.00	0.00	0.00	0.00	0.00	0.01	- 1	14
ggh -	1.00	1.63	0.00	0.01	0.01	0.00	0.00	0.03	- :	16

Sum of event weights

Replication of Pedrame's results

Before we tried to improve the L2N200 NN, we needed to see if we could reproduce the basic results.

Pedrame's results:

	Uncertainty on signal strength
et	± 0.44
mt	± 0.23
tt	± 0.33

Combined uncertainty on signal strength ± 0.18

Our results:

	Uncertainty on signal strength
et	± 0.44
mt	± 0.23
tt	± 0.33

Combined uncertainty on signal strength ± 0.18
--

Confidence Limit: 68%

Nbtag = 0 cut

ttbar involves production of b quarks, while $H \rightarrow \tau\tau$ (most of time) doesn't.

Motivation for selecting events with no btag before training: seriously bring down the level of one of the main backgrounds (ttbar) as to a confuse less the multi-class NN.

Nbtag = 0 cut efficiency	et	mt	tt
ttbar	0.2609 ± 0.0021	0.2602 ± 0.0014	-
ggH	0.9737 ± 0.0002	0.9747 ± 0.0001	0.9327 ± 0.0008
qqH	0.9575 ± 0.0002	0.9567 ± 0.0002	0.9542 ± 0.0003

Confusion matrix comparison for the et channel

Pedrame's confusion matrix

Nbtag = 0 confusion matrix

-14

- 12

- 10

- 8

-6

-4

-2

Sum of event weights

Pedrame's and Nbtag = 0: qqH NN scores for et

Comparison of signal strength precision

Pedrame's results:

	Uncertainty on signal strength
et	± 0.44
mt	± 0.23
tt	± 0.33

Nbtag = 0 results:

	Uncertainty on signal strength
et	± 0.39
mt	± 0.22
tt	± 0.31

Combined uncertainty on signal strength	± 0.18
---	--------

Combined uncertainty on signal strength ± 0.16

- For et the cut improved the signal strength precision in 11.4%
- For mt the cut improved the signal strength precision in 4.3%
- For tt the cut improved the signal strength precision in 6.1%
- For CMB the cut improved the signal strength precision in 11.1%

NN score cut

After the Nbtag = 0 proved successful, we decided to try a different cut, based on a NN output.

In this approach, we used two NN's, one of which serves to filter events to be fed to the other one, the latter being used as before.

With the 1st NN, we want to diminish the contribution of processes other than ztt, so that when we run the NN it has less backgrounds and can hopefully better distinguish between signal & ztt.

Pedrame's Purity 1 matrix for et

Architecture of the NN score cut approach

et/mt			
Cla	asses	Drococco	
NN1	NN2	Processes	
	micc	EWK	
pr	misc	VV	
nu	W	W	
kgro	tt	LTT TTT	
acl	-11	ZL	
B	211	ZJ	
	SS	QCD	
اه	ztt	ZTT	
guș	qqH	qqh	
Sig	ggH	ggh	

tt				
Classes				
NN1	NN2	Processes		
q		EWK		
ckgroun		VV		
	misc	W		
		TTT		
		ZL		
a(ZJ		
В	noniso	QCD		
Signal	ztt	ZTT		
	qqH	qqh		
	ggH	ggh		

NN2 has the same categorization as NNO(Pedrame's) but trains with filtered events

Confusion matrices for NN1

mt channel confusion matrix

Selection of events B (for NN2)

We chose the place of the cut where the efficiency is at least 90% for both qqH and ggH.

Cuts:

- et: 0.3
- mt: 0.3
- tt: 0.4

Confusion matrix comparison for et channel on NN2

ggh -	1.00	1.66	0.00	0.01	0.01	0.00	0.00	0.02	- 17.5	g	gh - 1.	00	1.49	0.00	0.02	0.03	0.01	0.02	0.07
qqh -	0.06	1.00	0.00	0.00	0.00	0.00	0.00	0.00	- 15.0	q	գի - Օ.	06	1.00	0.00	0.00	0.00	0.00	0.00	0.01
ztt -	18.89	13.61	1.00	0.38	0.20	0.02	0.20	2.12	- 12.5	:	ztt - 13	.54 1	10.45	1.00	0.45	0.82	0.11	2.03	5.00
- IIZ	4.79	2.52	0.03	1.00	0.14	0.00	0.17	0.30	- 10.0	ot even som of even	z - 3	18	1.76	0.03	1.00	0.38	0.02	0.48	0.53
True .	4.83	7.93	0.05	0.21	1.00	0.01	0.42	1.98	- 7.5) anı Lırıe veights	w- 2.	77	5.66	0.05	0.24	1.00	0.18	0.60	1.27
tt -	1.31	7.68	0.00	0.00	0.05	1.00	0.03	4.47	- 5.0		tt - 1.	05	4.38	0.00	0.01	0.10	1.00	0.08	2.31
ss -	5.01	8.55	0.11	0.26	0.59	0.11	1.00	2.51	.25		ss - 3	35	4.84	0.10	0.25	0.73	0.26	1.00	1.34
misc -	0.81	4.51	0.00	0.01	0.05	0.05	0.04	1.00	- 2.5	mi	sc- 0.	56	3.33	0.00	0.01	0.08	0.15	0.07	1.00
L	- dgb	- dah	ztt -	Predicte	s ed class	, t	SS	misc -	0.0			- 400	- dqh	ztt	Predicte	s ed class	ц,	Ś	misc -

Pedrame's confusion matrix

NN2 confusion matrix

- 12

- 10

-2

Sum of event weights

Pedrame's and NN2: qqH scores for et

Comparison of signal strength precision

Pedrame's results:

	Uncertainty on signal strength
et	± 0.45
mt	± 0.25
tt	± 0.33

New approach results:

	Uncertanty on signal strength
et	± 0.39
mt	± 0.25
tt	-

Combined uncertainty on signal strength ± 0.18

Combined uncertainty on signal strength -

- For et the cut improved the signal strength precision in 13%
- For mt the cut didn't change the signal strength precision.

Conclusions

- We acquainted ourselves with the challenges of Higgs search where the signal is orders of magnitude smaller than the stardand model background.
- We learned to work with a multi class NN
- We tried two new approaches that are improving the performance of the normal approach.
 - One with nbtag = 0 (bringing down level of ttbar background)
 - 2. A new one (bringing down the level of standard model background by doing a two level neural net)

Further work

- Re-checking analysis part of the used framework which fails under some conditions.
- Try different NN architectures

Thanks!

Additional information slides:

Confusion matrix comparison for mt channel

Pedrame's confusion matrix

Nbtag = 0 confusion matrix

Pedrame's and Nbtag = 0: qqH NN scores for mt

Confusion matrix comparison for tt.

Pedrame's confusion matrix.

Nbtag == 0 confusion matrix.

Pedrame's vs Nbtag == 0: qqH NN scores for tt

Confusion matrix comparison for mt channel on NN2

Pedrame's confusion matrix

NN2 confusion matrix

mnS

of event

Pedrame's and new NN: qqH NN scores for mt

Confusion matrix comparison for tt channel on NN2

Pedrame's confusion matrix

NN2 confusion matrix

Pedrame's and NN2: qqH NN scores for tt

