
Study on the performance of the ATLAS
TopoCluster algorithm using GPGPU Acceleration

Supervisor: Dra. P. Conde Múıño

Eduardo Ferreira

LIP · IST

05 Setember 2018

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 1 / 17

ATLAS Trigger and Data Acquisition System

The LHC @ CERN provides a
bunch crossing rate of
≈ 40Mhz and 22 collisions per
bunch crossing.

1 1st Level - Hardware Based -
Reduces the 40MHz event rate
to ≈ 100kHz

2 2nd Level - Software Based -
Algorithms run on the
previously selected events -
Reduces to a rate of ≈ 1.5kHz
to be stored for further
processing

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 2 / 17

ATLAS Trigger and Data Acquisition System

The LHC @ CERN provides a
bunch crossing rate of
≈ 40Mhz and 22 collisions per
bunch crossing.

1 1st Level - Hardware Based -
Reduces the 40MHz event rate
to ≈ 100kHz

2 2nd Level - Software Based -
Algorithms run on the
previously selected events -
Reduces to a rate of ≈ 1.5kHz
to be stored for further
processing

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 2 / 17

ATLAS Trigger and Data Acquisition System

The LHC @ CERN provides a
bunch crossing rate of
≈ 40Mhz and 22 collisions per
bunch crossing.

1 1st Level - Hardware Based -
Reduces the 40MHz event rate
to ≈ 100kHz

2 2nd Level - Software Based -
Algorithms run on the
previously selected events -
Reduces to a rate of ≈ 1.5kHz
to be stored for further
processing

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 2 / 17

Motivation

LHC will undergo a two phase update to increase its luminosity:
1 1st Phase (2019-20)
2 2nd Phase (2024-26)

This will dramatrically increase the number of collisions per bunch
crossing.

Hi-Lumi LHC will further increase the amount of data collected per
run.

Computational power is constrained (by power, area, heat
dissipation...) - Need to find new solutions to increase computational
throughput.

One particular alternative is being considered: Parallel processing
using Nvidia GPGPU’s using the Nvidia CUDA Techonology

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 3 / 17

Motivation

LHC will undergo a two phase update to increase its luminosity:
1 1st Phase (2019-20)
2 2nd Phase (2024-26)

This will dramatrically increase the number of collisions per bunch
crossing.

Hi-Lumi LHC will further increase the amount of data collected per
run.

Computational power is constrained (by power, area, heat
dissipation...) - Need to find new solutions to increase computational
throughput.

One particular alternative is being considered: Parallel processing
using Nvidia GPGPU’s using the Nvidia CUDA Techonology

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 3 / 17

Motivation

LHC will undergo a two phase update to increase its luminosity:
1 1st Phase (2019-20)
2 2nd Phase (2024-26)

This will dramatrically increase the number of collisions per bunch
crossing.

Hi-Lumi LHC will further increase the amount of data collected per
run.

Computational power is constrained (by power, area, heat
dissipation...) - Need to find new solutions to increase computational
throughput.

One particular alternative is being considered: Parallel processing
using Nvidia GPGPU’s using the Nvidia CUDA Techonology

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 3 / 17

Motivation

LHC will undergo a two phase update to increase its luminosity:
1 1st Phase (2019-20)
2 2nd Phase (2024-26)

This will dramatrically increase the number of collisions per bunch
crossing.

Hi-Lumi LHC will further increase the amount of data collected per
run.

Computational power is constrained (by power, area, heat
dissipation...) - Need to find new solutions to increase computational
throughput.

One particular alternative is being considered: Parallel processing
using Nvidia GPGPU’s using the Nvidia CUDA Techonology

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 3 / 17

Topological Clustering

Our main focus: Accelerate the performance of the Topological
Clustering Portion of the HLT

This handles the reconstruction of particle jets by grouping calorimeter
cells into structures named Clusters

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 4 / 17

GPU Cluster Growing

1 Sorts cells by their
(
signal
noise

)2
ratio (only cells with S/N 4 are selected

as seed cells);

2 Assigns seed cells a tag based on their position in the ordering;

3 Assigns a thread to a pair of neighbour cells;
4 Each thread determines the pair’s tag:

Higher Tags get propagated;
Cluster Growing stops when meets a cell with (S/N ≤ 1).

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 5 / 17

GPU Cluster Growing

1 Sorts cells by their
(
signal
noise

)2
ratio (only cells with S/N 4 are selected

as seed cells);

2 Assigns seed cells a tag based on their position in the ordering;

3 Assigns a thread to a pair of neighbour cells;
4 Each thread determines the pair’s tag:

Higher Tags get propagated;
Cluster Growing stops when meets a cell with (S/N ≤ 1).

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 5 / 17

GPU Cluster Growing

1 Sorts cells by their
(
signal
noise

)2
ratio (only cells with S/N 4 are selected

as seed cells);

2 Assigns seed cells a tag based on their position in the ordering;

3 Assigns a thread to a pair of neighbour cells;

4 Each thread determines the pair’s tag:

Higher Tags get propagated;
Cluster Growing stops when meets a cell with (S/N ≤ 1).

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 5 / 17

GPU Cluster Growing

1 Sorts cells by their
(
signal
noise

)2
ratio (only cells with S/N 4 are selected

as seed cells);

2 Assigns seed cells a tag based on their position in the ordering;

3 Assigns a thread to a pair of neighbour cells;
4 Each thread determines the pair’s tag:

Higher Tags get propagated;
Cluster Growing stops when meets a cell with (S/N ≤ 1).

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 5 / 17

GPU Cluster Splitter

The splitter takes as input the previously produced cluster and
outputs new smaller clusters.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 6 / 17

Architecture

The Trigger will now use an client-server architecture:
Athena (ATLAS Trigger Software), running in a CPU, will interface
with another machine, APE.
APE will receive Athena’s requests and execute them using the several
accelerator resources available.
APE will then return the processed data back to Athena

This allows Athena to be independent of the specific accelerator
details.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 7 / 17

Methodology

Our work consisted in running the TopoCluster Algorithm using a
Standalone Client to simulate Athena’s requests.

Tests were run for the Growing Portion and the Splitter Portion
separately.

Finally the two were combined.

Input data was a collection of sample pre processed Athena jets and
tt̄ events.

Test Bed:

CPU: AMD FX-8320 8-core @ 3.5GHz
GPU: Nvidia GeForce GTX 650 (2048MB of VRAM)
RAM: 8GB

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 8 / 17

Methodology

Our work consisted in running the TopoCluster Algorithm using a
Standalone Client to simulate Athena’s requests.

Tests were run for the Growing Portion and the Splitter Portion
separately.

Finally the two were combined.

Input data was a collection of sample pre processed Athena jets and
tt̄ events.

Test Bed:

CPU: AMD FX-8320 8-core @ 3.5GHz
GPU: Nvidia GeForce GTX 650 (2048MB of VRAM)
RAM: 8GB

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 8 / 17

Methodology

Our work consisted in running the TopoCluster Algorithm using a
Standalone Client to simulate Athena’s requests.

Tests were run for the Growing Portion and the Splitter Portion
separately.

Finally the two were combined.

Input data was a collection of sample pre processed Athena jets and
tt̄ events.

Test Bed:

CPU: AMD FX-8320 8-core @ 3.5GHz
GPU: Nvidia GeForce GTX 650 (2048MB of VRAM)
RAM: 8GB

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 8 / 17

Methodology

Our work consisted in running the TopoCluster Algorithm using a
Standalone Client to simulate Athena’s requests.

Tests were run for the Growing Portion and the Splitter Portion
separately.

Finally the two were combined.

Input data was a collection of sample pre processed Athena jets and
tt̄ events.

Test Bed:

CPU: AMD FX-8320 8-core @ 3.5GHz
GPU: Nvidia GeForce GTX 650 (2048MB of VRAM)
RAM: 8GB

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 8 / 17

t̄t vs jets

t̄t Jets

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 9 / 17

Growing Condensed Results

Total Worker Initialization EDM H to D Cell Rating Kernel Seed Tag Kernel Growing Kernel EDM D to H

T
im

e
 (

m
s
)

0.2

0.3

0.4

0.5
0.6

1

2

3

4

5
6

10
<7.9845 ms>

<1.2680 ms>

<0.3822 ms>

<2.7645 ms>

<1.7135 ms>

Jets Events

TTbar Events

Growing Worker Times

Initialization and copying are significant

Input: Cell Energy - Output: Clusters containing all cell information

tt̄ is more demanding than jets.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 10 / 17

Splitter Condensed Results

Total Worker Initialization EDM H to D Local Maxima Kernel Splitter Kernel Shared Splitter Kernel Output Kernel EDM D to H

T
im

e
 (

m
s
)

0.02

0.03

0.1

0.2

0.3

1

2

3

10
<6.6278 ms>

<1.4768 ms>

<1.1313 ms>

<1.9945 ms>

Jets Events (version 2)

TTbar Events (version 2)

Jets Events (version 3)

TTbar Events (version 3)

Splitter Worker Times

Initialization and copying very significant

Most kernels take less than 1ms.

Two different versions
Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 11 / 17

Why two versions?

Properties of GPGPU’s: tasks are no longer run sequentially. A large
number of threads run the same instructions concurrently.

Double edged sword: Threads write and read to the same memory
addresses at the same time, in no particular order.

This can create race conditions and synchronization problems.

Global variables need special care: we must ensure writes and reads
are in the order we desire.

CUDA defines a special function to do this: syncthreads();

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 12 / 17

Why two versions?

Properties of GPGPU’s: tasks are no longer run sequentially. A large
number of threads run the same instructions concurrently.

Double edged sword: Threads write and read to the same memory
addresses at the same time, in no particular order.

This can create race conditions and synchronization problems.

Global variables need special care: we must ensure writes and reads
are in the order we desire.

CUDA defines a special function to do this: syncthreads();

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 12 / 17

Why two versions?

Properties of GPGPU’s: tasks are no longer run sequentially. A large
number of threads run the same instructions concurrently.

Double edged sword: Threads write and read to the same memory
addresses at the same time, in no particular order.

This can create race conditions and synchronization problems.

Global variables need special care: we must ensure writes and reads
are in the order we desire.

CUDA defines a special function to do this: syncthreads();

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 12 / 17

Why two versions?

Properties of GPGPU’s: tasks are no longer run sequentially. A large
number of threads run the same instructions concurrently.

Double edged sword: Threads write and read to the same memory
addresses at the same time, in no particular order.

This can create race conditions and synchronization problems.

Global variables need special care: we must ensure writes and reads
are in the order we desire.

CUDA defines a special function to do this: syncthreads();

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 12 / 17

Why two versions?

Properties of GPGPU’s: tasks are no longer run sequentially. A large
number of threads run the same instructions concurrently.

Double edged sword: Threads write and read to the same memory
addresses at the same time, in no particular order.

This can create race conditions and synchronization problems.

Global variables need special care: we must ensure writes and reads
are in the order we desire.

CUDA defines a special function to do this: syncthreads();

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 12 / 17

Splitter Kernel Version 3 - Main Loop

In the first iteration Q is the list of local maxima

Sometimes threads execute the loop over Q, with the wrong length
causing the whole process to hang.

Solution: syncthreads() before the loop

This made code slower as we now have to wait for all threads.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 13 / 17

Splitter Kernel Version 3 - Main Loop

In the first iteration Q is the list of local maxima

Sometimes threads execute the loop over Q, with the wrong length
causing the whole process to hang.

Solution: syncthreads() before the loop

This made code slower as we now have to wait for all threads.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 13 / 17

Splitter Kernel Version 3 - Main Loop

In the first iteration Q is the list of local maxima

Sometimes threads execute the loop over Q, with the wrong length
causing the whole process to hang.

Solution: syncthreads() before the loop

This made code slower as we now have to wait for all threads.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 13 / 17

Splitter Kernel Version 3 - Main Loop

In the first iteration Q is the list of local maxima

Sometimes threads execute the loop over Q, with the wrong length
causing the whole process to hang.

Solution: syncthreads() before the loop

This made code slower as we now have to wait for all threads.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 13 / 17

Combined Condensed Results

Total Worker Growing Portion Splitter Portion

T
im

e
 (

m
s
)

2

3

4

5

6

7

8

9
10

<8.7840 ms>

<5.0315 ms>

<2.5410 ms>

Jets Events

TTbar Events

Combined Worker Times

Splitter V2 used.

Total time is much lower than the sum of the separate growing and
splitting stage

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 14 / 17

Combined Growing Condensed Results

Growing Portion Initialization EDM H to D Cell Rating Kernel Seed Tag Kernel Growing Kernel

T
im

e
 (

m
s
)

0.2

0.3

0.4

0.5
0.6

1

2

3

4

5
6

<5.0315 ms>

<1.2580 ms>

<0.3756 ms>

<2.7715 ms>

Jets Events

TTbar Events

Combined Growing Worker Times

Total time decreased

Note the absence of data copies from the device

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 15 / 17

Combined Splitter Condensed Results

Splitter Portion Initialization Local Maxima Kernel Splitter Kernel Shared Splitter Kernel Output Kernel EDM D to H

T
im

e
 (

m
s
)

0.02

0.03
0.04

0.1

0.2

0.3

0.4

1

2

3
4

<2.5410 ms>

<0.1593 ms>

<0.3138 ms>

<1.6560 ms>

Jets Events

TTbar Events

Combined Splitter Worker Times

Total time decreased about 50%

Again, no copies to the device, data is already there.

Most of the time is spent copying data rather than processing

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 16 / 17

Conclusions

Growing algorithm achieves an average of ≈ 7-8ms per event.

Splitter algorithm achieves an average of ≈ 6-7ms per event.

As seen, combining the two steps results in a combined average of ≈
8-9ms per event.

Comparing times for CPU only execution, around 10 fold
improvement is achieved.

There’s a problem: data conversion to and from the GPU as well as
data transfer accounts for a significant portion of the time spent.

GPGPU’s show a promising improve in terms of accelerating
processing tasks, while providing less power consumption and physical
footprint.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 17 / 17

Conclusions

Growing algorithm achieves an average of ≈ 7-8ms per event.

Splitter algorithm achieves an average of ≈ 6-7ms per event.

As seen, combining the two steps results in a combined average of ≈
8-9ms per event.

Comparing times for CPU only execution, around 10 fold
improvement is achieved.

There’s a problem: data conversion to and from the GPU as well as
data transfer accounts for a significant portion of the time spent.

GPGPU’s show a promising improve in terms of accelerating
processing tasks, while providing less power consumption and physical
footprint.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 17 / 17

Conclusions

Growing algorithm achieves an average of ≈ 7-8ms per event.

Splitter algorithm achieves an average of ≈ 6-7ms per event.

As seen, combining the two steps results in a combined average of ≈
8-9ms per event.

Comparing times for CPU only execution, around 10 fold
improvement is achieved.

There’s a problem: data conversion to and from the GPU as well as
data transfer accounts for a significant portion of the time spent.

GPGPU’s show a promising improve in terms of accelerating
processing tasks, while providing less power consumption and physical
footprint.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 17 / 17

Conclusions

Growing algorithm achieves an average of ≈ 7-8ms per event.

Splitter algorithm achieves an average of ≈ 6-7ms per event.

As seen, combining the two steps results in a combined average of ≈
8-9ms per event.

Comparing times for CPU only execution, around 10 fold
improvement is achieved.

There’s a problem: data conversion to and from the GPU as well as
data transfer accounts for a significant portion of the time spent.

GPGPU’s show a promising improve in terms of accelerating
processing tasks, while providing less power consumption and physical
footprint.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 17 / 17

Conclusions

Growing algorithm achieves an average of ≈ 7-8ms per event.

Splitter algorithm achieves an average of ≈ 6-7ms per event.

As seen, combining the two steps results in a combined average of ≈
8-9ms per event.

Comparing times for CPU only execution, around 10 fold
improvement is achieved.

There’s a problem: data conversion to and from the GPU as well as
data transfer accounts for a significant portion of the time spent.

GPGPU’s show a promising improve in terms of accelerating
processing tasks, while providing less power consumption and physical
footprint.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 17 / 17

Conclusions

Growing algorithm achieves an average of ≈ 7-8ms per event.

Splitter algorithm achieves an average of ≈ 6-7ms per event.

As seen, combining the two steps results in a combined average of ≈
8-9ms per event.

Comparing times for CPU only execution, around 10 fold
improvement is achieved.

There’s a problem: data conversion to and from the GPU as well as
data transfer accounts for a significant portion of the time spent.

GPGPU’s show a promising improve in terms of accelerating
processing tasks, while providing less power consumption and physical
footprint.

Eduardo Ferreira (LIP · IST) Accelerating ATLAS HLT with GPGPU’s 05 Setember 2018 17 / 17

