

Concept for a next generation detector

André Torcato

Melissa Serra, José Cordeiro, Sara Marques, José Jesus

Supervisors: Ruben Conceição, Bernardo Tomé, Mário Pimenta

Introduce the LATTES project and its importance

- Elaborate on the work developed on this internship

- Give insight to future work

γ -Ray Astrophysics

Fermi γ -Ray Space Telescope: https://svs.gsfc.nasa.gov/11342

Detecting γ -Rays I

Cherenkov Telescopes

Extensive Air Shower

Detecting γ -Rays II

Cherenkov Telescopes

MAGIC: http://www.magic.iac.es/

VERITAS: https://veritas.sao.arizona.edu/

Extensive Air Shower

ARGO: http://argo.na.infn.it/

HAWC: https://www.hawc-observatory.org/

LATTES: Next Generation Detector

Station: $3 \times 1.5 \times 0.5 m^3$

- RPCs on top of WCDs
- PMTs on the side
- Interior walls in white

Array: $20\ 000\ +\ 80\ 000\ m^2$

- CoreArray + SparseArray
- Coverage area about 80%
- Altitude: 5200 m

Improving LATTES reconstruction

Time Resolution

José Jesus

γ/h Discrimination Sara Marques, José Cordeiro

Event Analysis André Torcato, Melissa Serra

Paper: Astroparticle Physics Volume 99, May 2018, Pages 34-42

Time Resolution Reconstruction of the Shower Geometry

 t_i t_i

• The shower direction is obtained from the arrival time of particles at ground

• Impact of the time resolution in the reconstruction of the shower geometry

Shower geometry reconstruction

Different array

configurations were

*γ***/h Discrimination**

Separating background from signal

- Flux of hadron background overwhelms signal from γ's
- Shower morphology can be used to discriminate

γ /h Discrimination

Linear Discriminante (Fisher) allows a good separation

Simple artificial neural networs can improve g/h discrimination

Keras + Scikit-learn + ANN with 3 layers

More simulation statistics necessary to apply parametric cuts

Event Analyses Characterizing the responses of the stations

• Describing the events, visualizing them graphicly and tracing their fit curve

Discovery of failed events
correspondent to failed fits that opens
up more improvement for LATTES

- E0;

- Erec;

WCD x position;

WCD y position;

WCD Signal;

- CoreSim;

- CoreRec;

- CoreRecBar

LATTES: Event Visualizer I

LATTES: Event Visualizer II

Medium of y value for each x bin - ROOT object: TProfile

Distance between CoreSim and one single station: x value used

Events with failed CoreRec

How many events?

Analysing Failed Events

- LATTES has a strong potential to study astrophysical γ -rays

 Improvements were identified in current LATTES reconstruction and will be further developed