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Ultra-high Energy Cosmic Rays (UHECR)

Extremely energetic subatomic particles, protons or heavier nuclei, with
E > 1018 eV;

Have extremely low flux - about 1 km−2 century−1, at E ≈ 1020 eV.

Figure: Cosmic ray energy spectrum
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UHECR - Showers

UHECR produce Extensive Air Showers (EAS) as they interact with nuclei in
the high atmosphere.

Figure: Particle shower

A proton or heavy nuclei (e.g. Fe
nucleus) is a primary, initiating the
chain reaction

The particle shower has
eletromagnetic (γ, e−, e+, π0,...)
and hadronic components
(p,n,π+,π−,µ+,µ−,...)
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Importance of UHECR

The study of UHECR allows:

A better understanding of
high-energy events in the Universe;

A glimpse of particle physics at
energies above the LHC:

High-Energy interactions:
E ≈ 1010 GeV =⇒

√
s ≈ 130

TeV ≈ 10×
√
sLHC;

Different kinematic regimes:
Ebeam up to 1011 GeV

Figure: AGN - active galactic nucleus

Indirect study of UHECR through:

Measurements of the shower’s content and shower reconstruction - Pierre
Auger Observatory

Monte Carlo simulations - Hadronic Interaction Models (HM)
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Pierre Auger Observatory

Covering an area of about 3000 km2, the Pierre Auger Observatory, at 1400 m
above sea level, in Pampa Amarilla, Mendoza, Argentina, has been collecting data
since 2004.

Figure: Pierre Auger Observatory

The installation has:

about 1600 Surface Detector
stations (SD), spaced by 1.5
km;

4 Fluorescence Detectors
(FD), each containing 6
fluorescence telescopes
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More on detectors

SD: samples the charged secundary particles that hit the ground. Has a duty
cicle of 100 %;

FD: collects the flourescence light produced by the eletromagnetic
component of the shower, in moonless nights. Has a duty cicle of 15 %;

(a) Surface detector (b) Fluorescence detetor
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Challenges

We still don’t know the primary =⇒ shower reconstruction through indirect
methods:

Muon detection

Form at any stage of the showers
development
Don’t interact =⇒ detected at
ground level

HM that simulate ultra-high energy
interactions, based on lower energy
events - known physics - such as
the ones from LHC

Figure: Muon detection
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A breakthrough

This year, a paper by L. Cazon, R. Conceição, F. Riehn, Phys.Lett. B784 (2018)
68-76: ”Probing the energy spectrum of hadrons in proton air interactions at
ultrahigh energies through the fluctuations of the muon content of extensive air
showers” proved that the fluctuations of the muon content of EAS directly
correlate with the fluctuations of a variable that probes the hadron energy
spectrum of the first interaction. This variable is α1:

α1 ≈ α =
Ehadronic

Etotal

Figure: Correlation between Nµ and α1
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Understanding α and HM

Goal: understand the tail structure of the α distribution - origin and hidden
physics
Considered Hadronic Models:

EPOS-lhc
QGSjetII-04

Both simulated about 100000 showers, with Ebeam = 1010 GeV, producing the
following α-distributions (note the different slopes for the α’s tail)
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Figure: α-distribution for both models
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Different Energy Spectra (ES)

The energy spectrum (ES) of the simulations differs according to the model used:

Models are similar for moderate energies ( up to E = 107 GeV);

Epos-lhc simulates harder interactions (ratio > 1 for E > 107 GeV)
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Different Energy Spectra (ES)

The energy spectrum (ES) of the simulations differs according to the model used:

Models are similar for moderate energies ( up to E = 107 GeV);

Epos-lhc simulates harder interactions (ratio > 1 for E > 107 GeV)
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α-distribution’s tail doesn’t depend on the particle of type!

Idea: the tail structure of the α-distribution is due to a specific type of particle.

We looked at αtype =
Etype

Etotal
and their contribution to α.
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Figure: Contribution of αtype to α

All αtypes contributed to the tail. Hence, α tail fluctuations DO NOT depend
on the particle’s type.
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α-distribution’ tail is shaped the pions energy spectrum

Idea: Maybe the pions energy spectrum is what shapes the α-distribution’s tail.
We built a simple Monte Carlo Toy model:
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Figure: π energy spectrum
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Figure: Toy model’s α Epos-lhc

Accounting for the fraction of energy carried by charged pions, Toy model’s α, we
successfully obtained the desired α tail structure. The α’s distribution tail is
shaped by the pions energy spectrum.
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Accounting for the fraction of energy carried by charged pions, Toy model’s α, we
successfully obtained the desired α tail structure. The α’s distribution tail is
shaped by the pions energy spectrum.
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Accounting for the fraction of energy carried by charged pions, Toy model’s α, we
successfully obtained the desired α tail structure. The α’s distribution tail is
shaped by the pions energy spectrum.

Miguel Martins (EV 2018 - LIP) α distribution September 4, 2018 12 / 15



α-distribution’ tail is shaped the pions energy spectrum

Idea: Maybe the pions energy spectrum is what shapes the α-distribution’s tail.
We built a simple Monte Carlo Toy model:

2− 0 2 4 6 8 10
(E)

10
log

0

50

100

150

200

250

300

350

3
10×

N
um

be
r 

of
 p

ar
tic

le
s

 Energy spectrumπ

Figure: π energy spectrum

EPOS_LHC
Entries  99828

Mean   0.7795
Std Dev    0.1364

 / ndf 2χ  40.26 / 33
Constant  0.0516± 0.9072 
Slope     0.084± 9.746 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

1

10

210

3
10

N
um

be
r 

of
 s

ho
w

er
s EPOS_LHC

Entries  99828

Mean   0.7795
Std Dev    0.1364

 / ndf 2χ  40.26 / 33
Constant  0.0516± 0.9072 
Slope     0.084± 9.746 

 distributionα
MCToyEPOS

Entries  99828

Mean   0.7834
Std Dev    0.1158

 / ndf 2χ  46.85 / 33
Constant  0.0550± 0.7387 
Slope     0.090± 9.793 

MCToyEPOS
Entries  99828

Mean   0.7834
Std Dev    0.1158

 / ndf 2χ  46.85 / 33
Constant  0.0550± 0.7387 
Slope     0.090± 9.793 

MCToy
EPOS_LHC

Figure: Toy model’s α Epos-lhc

Accounting for the fraction of energy carried by charged pions, Toy model’s α, we
successfully obtained the desired α tail structure. The α’s distribution tail is
shaped by the pions energy spectrum.
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Figure: Toy model’s α Epos-lhc

Accounting for the fraction of energy carried by charged pions, Toy model’s α, we
successfully obtained the desired α tail structure. The α’s distribution tail is
shaped by the pions energy spectrum.
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Figure: Toy model’s α Epos-lhc

Accounting for the fraction of energy carried by charged pions, Toy model’s α, we
successfully obtained the desired α tail structure. The α’s distribution tail is
shaped by the pions energy spectrum.
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Figure: Toy model’s α Epos-lhc

Accounting for the fraction of energy carried by charged pions, Toy model’s α, we
successfully obtained the desired α tail structure. The α’s distribution tail is
shaped by the pions energy spectrum.
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α’s distribution tail is sensible to changes in the forward
region of the pions energy spectrum

Idea: The forward region of the pions ES determines the α-distribution’s tail
structure?
Letting Ep and Q give the ES of Epos-lhc and QGSjet II-04, we applied the
transformation:

T (ε) = Ep + ε× (Q − Ep)

To different regions of Epos-lhcES: full, E < 102 GeV and E > 107 GeV.

What we did:

Figure: π energy spectrum

What we expect:

Figure: α-distribution for both models
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transformation:

T (ε) = Ep + ε× (Q − Ep)

To different regions of Epos-lhcES: full, E < 102 GeV and E > 107 GeV.

What we did:

Figure: π energy spectrum

What we expect:

Figure: α-distribution for both models
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α’s distribution tail is sensible to changes in the forward
region of the pions energy spectrum
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Figure: α vs ε

Changing the forward region is enough to reproduce QGSjet II-04’s α tail
structure form the Epos-lhc one.The tail of the α-distribution is only sensible
changes in this region of the pions ES
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Conclusions

Successfully determined the origin of the tail structure of the α-distribution

Particle physics measurements possible at energies 10 times greater than
those of LHC;

Findings soon to be reported as a paper
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