DEVELOPMENT OF A FRAMEWORK FOR MULTI-MESSENGER OBSERVATIONS WITH THE AUGER OBSERVATORY

Bernardo Dias and Nelson Eiró LIP Summer Internship 2018

MULTI-MESSENGER ASTRONOMY

Observation of different signals emitted by the same Event.

Types of signals:

- Electromagnetic Radiation
- Gravitational Waves
- Neutrinos
- Cosmic Rays (mainly high-energy protons and atomic nuclei)

Same Source

THE PIERRE AUGER OBSERVATORY

A Cosmic Ray and Neutrino observatory located in Argentina.

The size of the Auger Observatory over a satellite image of Lisbon.

Position of the Auger Observatory and it's detectors.

Los Aorado

A typical detector in the Auger Observatory.

PARTICLE DETECTION AT THE PIERRE AUGER OBSERVATORY

The detection of particles depends on the angle of arrival.

 $\theta < 60^{\circ}$:

Showers produced by Cosmic Rays $60^{\circ} < \theta < 75^{\circ}$: Showers produced by Cosmic Rays

Downward-going low angle Neutrinos

 $75^{\circ} < \theta < 90^{\circ}$:

downward-going high angle Neutrinos $90^{\circ} < \theta < 95^{\circ}$:

Earth-skimming neutrinos

THE OBJECTIVE

Creating software that allows the plotting of the sky at Auger and specific events.

Utility:

- Usage at the IST Control Room
- Studying Astronomical Events
- Know if an event was visible to the Auger Observatory

What to represent:

- Auger's field-of-view at a specific time
- The main sources visible in Auger's sky at that specific time
- Astronomical Events

COORDINATE SYSTEMS

Systems of coordinates used to represent the Celestial Sphere.

AUGER'S FIELD-OF-VIEW AND POSSIBLE SOURCES

http://www.lip.pt/~ev18117/equatorial.html

	Angle < 60	60 < Angle < 80	80 < Angle < 95
0	CenA	NGC4388	NGC4151
1	IC4329A	MCG-05-23-016	MCG+04-48-002
2	NGC4945	NGC7172	NGC7314
3	CircinusGalaxy	Mrk509	2MASSJ07594181-3843560
4	NGC5506	NGC3281	Fairall9
5	NGC4507	NGC3081	Mrk1498
6	NGC3783	NGC7582	MCG-01-24-012
7	AXJ1737.4-2907	NGC5548	Mrk417
8	NGC5252	NGC4992	Mrk915
9	ESO103-035	Mrk501	NGC4138

AUGER'S FIELD-OF-VIEW AND POSSIBLE SOURCES

http://www.lip.pt/~ev18117/galatica.html

	Angle < 60	60 < Angle < 80	80 < Angle < 95
0	CenA	NGC4388	NGC4151
1	IC4329A	MCG-05-23-016	MCG+04-48-002
2	NGC4945	NGC7172	NGC7314
3	CircinusGalaxy	Mrk509	2MASSJ07594181-3843560
4	NGC5506	NGC3281	Fairall9
5	NGC4507	NGC3081	Mrk1498
6	NGC3783	NGC7582	MCG-01-24-012
7	AXJ1737.4-2907	NGC5548	Mrk417
8	NGC5252	NGC4992	Mrk915
9	ESO103-035	Mrk501	NGC4138

DEVELOPMENT OF A FRAMEWORK FOR MULTI-MESSENGER OBSERVATIONS WITH THE AUGER OBSERVATORY

THE HUNT FOR HIGH-ENERGY PARTICLES

FACING THE PROBLEMS

- Time delay
- Deviation angles
- GZK effect

BUT FIRST...GYRATION RADIUS

$$r[m] = 3.33795 \frac{E[GeV]}{ZB[T]}$$

- A very big energy or a very small magnetic field is needed in order to far away particles reach us.
- Particles with small gyration radius get trapped in magnetic fields.

"Cosmic Rays and Particle Physics", Gaisser, Engel and Resconi, 2nd Edition, Cambridge University Press

BUT FIRST...MAGNETIC FIELDS

- Two ordered magnetic fields
 - Extragalactic
 - Magnitude $B_{IGM} \sim 10^{-11}$ G
 - Important at distances > 10-100 Mpc
 - Galactic
 - -Magnitude $B_{gal} \sim 10^{-6} {
 m G}$
 - Important at distances < 100 kpc
 - One random magnetic field
 - Magnitude $B_r \sim 10^{-9} \text{G}$
 - Important at distances > 10 Mpc

nue 1 A ashematic plat of the Taing model for an idealized

KINEMATIC DELAY OF NEUTRAL PARTICLES

- The easy one

$$-t_{unc}[s] = \frac{d}{2c} \left(\frac{m}{E}\right)^2 = 5.14294 \times 10^7 d[pc] \left(\frac{m}{E}\right)^2$$

- At energies $E > 10^{18} eV$ is negligible

TIME DELAY OF CHARGED PARTICLES

$$\begin{split} t_{gal}[yr] &= \frac{\Delta x}{c} \approx 3.262 \times 10^6 R \, [Mpc] \, (\alpha - 2\sin(\alpha/2)) \\ t_{IGM}[yr] &\approx 1200 \, Z^2 \left(\frac{D \, [Mpc]}{100 \, Mpc} \right)^3 \left(\frac{10^{20}}{E \, [eV]} \right)^2 \left(\frac{B_{IGM} \, [G]}{10^{-11} \, G} \right)^2 \\ t_r \, [yr] &\approx 3.1 \times 10^5 Z^2 \left(\frac{D \, [Mpc]}{100 \, Mpc} \right)^2 \left(\frac{10^{20}}{E \, [eV]} \right)^2 \left(\frac{B_r \, [G]}{10^{-9} \, G} \right)^2 \frac{l_{coh} \, [Mpc]}{1 \, Mpc} \end{split}$$

TIME DELAY OF CHARGED PARTICLES

 t_{gal} Conclusions 10 t_{IGM} T_{sum} - Dependence with Z^2 $Log_{10}(T) [yr]$ - In general, big time delays are obtained Galaxy GW Blazar -2 $^{-1}$ 2 3 $Log_{10}(D) [Mpc]$

Time delay of charged particle (yr) in function of distance (Mpc) for $E = 10^{19} eV$

DEVIATION ANGLES

- Random

- Ordered

$$\Delta \theta_r \approx 3.5^{\circ} Z \frac{B_r \,[G]}{10^{-9} \, G} \frac{10^{20}}{E \,[eV]} \left(\frac{l_{coh}}{1 \, Mpc} \frac{D \,[Mpc]}{100 \, Mpc} \right)^{1/2}$$

DEVIATION ANGLES

Conclusions
- Major influence
from galactic
magnetic field
- In general, for
large distances (> 1
Gpc) we obtain
unphysical deviation

angles

500 θ_{gal} θ_r θ_{IGM} 400 $\sqrt{\theta_{gal}^2 + \theta_{IGM}^2}$ (ō)6 200 100 -2 -1 3 $Log_{10}(D) [Mpc]$

Deflection angles (°) as function of the distance to the source (in Mpc), for $E = 10^{19} eV$

600

- For energies above the GZK threshold ($E > 10^{19.5} eV$), the protons interact with the CMB photons

$$p + \gamma \rightarrow \Delta^{+} \rightarrow p + \pi^{0} \quad (\gamma)$$
$$n + \pi^{+} \quad (v)$$

The mean free path is ≈10 Mpc, and protons lost approximately
20% of their energy

Taken from http://apcauger.in2p3.fr/Public/Presentation/Images/GZK_proton.jpg

BLAZAR TXS 0506+056

Distance \approx 1.1 Gpc

Observed in 2017 by IceCube, with a 290 TeV neutrino

Particle	Horizon (pc)	Energy (eV)	$r_G (pc)$	$\Delta \theta$ (°)	$\sigma \theta$ (°)	ΔT
	$9.121 * 10^3$	10^{18}	-	-	-	0.05~(s)
n	$9.121 * 10^{6}$	10^{21}	-	-	-	5×10^{-8} (s)
	$9.121 * 10^9$	10^{24}	-	-	-	5×10^{-14} (s)
		10^{18}	1.08×10^{6}	1691.62	1160.80	$3.91 \times 10^{11} (yr)$
р		10^{21}	1.08×10^9	5.25	1182.17	$3.91 \times 10^5 \text{ (yr)}$
		10^{24}	1.08×10^{12}	5.16	803.29	0.391 (yr)
		10^{18}	4.16×10^{4}	43982.17	30180.87	$2.64 \times 10^{14} \text{ (yr)}$
Fe		10^{21}	4.16×10^7	136.44	799143.59	$2.64 \times 10^8 \ (yr)$
		10^{24}	4.16×10^{10}	134.27	543024.03	264.365 (yr)

GW170817

	Particle	Horizon (pc)	Energy (eV)	$r_G (pc)$	$\Delta \theta$ (°)	$\sigma \theta$ (°)	ΔT
		$9.121 * 10^3$	10^{18}	-	-	-	$1.81 \times 10^{-3} (s)$
	n	$9.121 * 10^{6}$	10^{21}	-	-	-	$1.81 \times 10^{-9} (s)$
Distance ≈39.85 Mpc		$9.121 * 10^9$	10^{24}	-	-	-	$1.81 \times 10^{-15} (s)$
I.	р		10^{18}	1.08×10^{6}	1588.13	220.86	$4.93 \times 10^8 \text{ (yr)}$
Observed in 2017 by			10^{21}	1.08×10^9	0.164	0.096	493.05 (yr)
CO and V/DCO			10^{24}	1.08×10^{12}	1.64×10^{-4}	9.58×10^{-8}	$4.93 \times 10^{-4} \text{ (yr)}$
GO and VIRGO	Fe		10^{18}	4.16×10^4	41291.17	5742.38	$3.33 \times 10^{11} \text{ (yr)}$
			10^{21}	4.16×10^7	4.26	6 4.75	$3.33 \times 10^5 \text{ (yr)}$
			10^{24}	4.16×10^{10}	4.26×10^{-3}	6.47×10^{-5}	$0.333 \; (yr)$

DEVELOPMENT OF A FRAMEWORK FOR MULTI-MESSENGER OBSERVATIONS WITH THE AUGER OBSERVATORY

LIGO and VIRGO

19/20

SUPERNOVA 1987a

Distance \approx 51.4 kpc

Observed in 1987 by Kamiokande II, IMB and Baksan in neutrinos

Ī	Particle	Horizon (pc)	Energy (eV)	$r_G (pc)$	$\Delta \theta$ (°)	$\sigma \theta$ (°)	ΔT
Ĩ		$9.121 * 10^3$	10^{18}	-	-	-	2.33×10^{-6}
	n	$9.121 * 10^{6}$	10^{21}	-	-	-	2.33×10^{-12}
		$9.121 * 10^9$	10^{24}	-	-	-	2.33×10^{-18}
Ī			10^{18}	1.08×10^6	1587.99	5.12	819 (yr)
	р		10^{21}	1.08×10^9	1.59	5.12×10^{-3}	$0.117 ({ m yr})$
			10^{24}	1.08×10^{12}	1.59×10^{-3}	5.12×10^{-6}	$1.17 \times 10^{-7} (yr)$
Ī			10^{18}	4.16×10^4	41287.76	133.12	553650 (yr)
	Fe		10^{21}	4.16×10^7	41.29	0.133	79.614 (yr)
			10^{24}	4.16×10^{10}	0.0413	1.33×10^{-4}	$7.91 \times 10^{-5} \text{ (yr)}$

