LATTES Reconstruction Analyses opportunities

Ruben Conceição

P. Abreu, A. Bueno, J. Cordeiro, A. Guillén, L. J. Herrera, J. Jesus, S. Marques, M. Pimenta, F. Salles, M. Serra, B. Tomé, A. Torcato, J. Vicha

And you?!....

7th LATTES meeting, Coimbra, September 28th 2018

Towards LATTES reconstruction

Reconstruction

 First order analyses with little optimization only to demonstrate principle

Performance and sensitivity

Astroparticle Physics 99 (2018) 34-42

Design and expected performance of a novel hybrid detector for very-high-energy gamma-ray astrophysics

P. Assis^{a,b}, U. Barres de Almeida^c, A. Blanco^d, R. Conceição^{a,b,*}, B. D'Ettorre Piazzoli^e, A. De Angelis^{f,g,b,a}, M. Doro^{h,f}, P. Fonte^d, L. Lopes^d, G. Matthiaeⁱ, M. Pimenta^{b,a}, R. Shellard^c, B. Tomé^{a,b}

Sensitivity to steady sources

Can we improve LATTES reconstruction?

Station: HAWC vs LATTES

HAWC (present detector)

A hybrid detector with lots of potential...

What we have learned so far...

- Energy reconstruction
- Geometry reconstruction
- Gamma/hadron discrimination
- Sensitivity and angular dependency

Shower Core Position Reconstruction

Shower core reconstruction

Average LDF

- ♦ Use the WCD signal
- ♦ Barycenter
 - Initial guess
 - Works but the core is always reconstructed inside the array

Fit the WCD LDF

 Fit photon average LDF to fix the shape

- ♦ Function inspired in HAWC
- Nearly no evolution with energy
- ♦ Use this form to find the maximum, i.e. the shower core

$$S_i = S(A, \vec{x}, \vec{x}_i) = A \Big(\frac{1}{2\pi\sigma^2} e^{-|\vec{x}_i - \vec{x}|^2/2\sigma^2} + \frac{N}{(0.5 + |\vec{x}_i - \vec{x}|/R_m)^3} \Big)$$
R. Conceição

Shower core reconstruction

- Test whether the shower is inside/outside the array
 - Explore LDF topology
 - Is maximum observed inside of array?
 - Currently exploring the quality of the fit
 - Fixed cut for all energies
- Resolution better than 10 meters for showers above 300 GeV

Core Rec of high-energy events

10

How many events?

 For events above 5 TeV about 5 % of the events do not get a reconstructed core

Probable cause...

André Torcato Melissa Serra

 Average LDF needs to account for some WCD leakage in the core

Shower Energy Reconstruction

Energy reconstruction

- $E_0 \rightarrow$ Simulated energy
 - $E \rightarrow$ Reconstructed energy

- Use as energy estimator the total signal recorded by WCDs
 Use only shower cores reconstructed inside array
- Energy resolution at low energy dominated by shower fluctuations

Towards a more sophisticated energy reconstruction

Pedro Abreu

 Combine the core position with an average LDF to estimate the amount of energy outside of the array

Shower Geometry Reconstruction

Shower geometry reconstruction

- Use RPC hit time information
 - Take advantage of high spatial and time resolution
 - Used time resolution of 1 ns
 - Obtain shower
 geometry using a
 conic shower front
 model

Geom Rec: RPC time resolution

Geom Rec: array configuration

♦ It seems
 important
 to have
 RPCs on all
 stations

Geom Rec: RPC + WCD

José Jesus, ...

 Next steps: use only first hit in pad (trade-off between higher correlation with shower front and event statistics)

Gamma/hadron Discrimination

LATTES g/h discrimination

Although not optimized the gamma/hadron discrimination results are already very encouraging

G/H discrimination and ANN

- Linear Discriminante
 (Fisher) allows a good
 separation
- Simple artificial neural networs can improve g/h discrimination
- Keras + Scikit-learn +
 ANN with 5 layers
- More simulation
 statistics necessary to
 apply parametric cuts
- ♦ Test at lower energies...

Sara Marques, ...

G/H discrimination: next step

Antonio Bueno et al...

LATTES: Multivariate Analyses Workshop

- Friday 14 Sep 2018, 09:00 → 18:30 Europe/Madrid
- Seminario de Física Teórica, Edificio Mecenas, University of Granada

- Use shower patterns at ground to distinguish between gamma and hadron induced showers
- A Meeting at Granada
 - Use pattern recognition
 ANN
 - Master thesis to be opened in Granada

Reconstruction of showers at different zenith angles

Sensitivity to steady sources

- ♦Dashed line: Crab transit as seen by HAWC
 - Degradation of effective area with zenith angle estimated from electromagnetic energy at ground

Shower rec at higher zenith angles

Filipe Salles

- Simulate 30 degree showers
- Use LATTESrec
 standard tools to
 make precise
 assessment of
 reconstruction
- ♦ Refine analyses to
 higher time dispersal
 + less hits at ground

Sparse Array

Sparse Array

♦ Use a sparser array (100 000 m2)

- Ollect more events at higher energies
 Output
 Description
 Section:
 Description:
 Descripticon:
- Remove high energy events that fall outside of the core array

Sparse Array impact at low energies

Bernardo, Ruben, ...

- Sparse array simulation completed
- ♦ Fast simulation
- Inconclusive results
 - CORSIKA vs
 LATTESrec
 simulation
 currently in
 progress

Vetoing showers that fall outside the array

Summary

LATTES reconstruction can still be considerably improved

Ander

And the limit is your imagination ;-)

Acknowledgements

Backup slides

LATTES: a hybrid detector

♦ Thin lead plate

- To convert the secondary photons
- Improve geometric reconstruction
- Resistive Plates Chamber
 - Sensitive to charged particles
 - Good time and spatial resolution
 - Improve geometric reconstruction
 - ♦ Explore shower particle patterns at ground

Water Cherenkov Detector

- Sensitive to secondary photons and charged particles
- Measure energy flow at ground
- Improve trigger capability
- Improve gamma/hadron discrimination

WCD vs RPC (station level)

Crab

17

Impact of altitude

Reconstruction efficiency

