Introduction to Deep Neural Networks and their application to Physics

Alberto Guillén and Luis Javier Herrera

University of Granada

14 September 2018

Contents

- Introduction to Machine Learning and Deep Learning
- Application Example
- Conclusions and Future work

Approximate Definition

Machine learning

- A wide variety of techniques, technologies and models to tackle problems like:Classification, Natural Language Processing, Regression, Games, etc
- "What separates machine learning from optimization is that we want the generalization error, also called the test error, to be low aswell"
- Soft Computing:

it is a meta discipline, also known as Computational Intelligence, which includes metaheuristics and bioinspired systems as well

Types of problems

According to the INPUT given to the algorithm

- ▶ Unsupervised $X = [\vec{x}^i]$ with i = 1...m and $\vec{x}^i \in \mathbb{R}$ vs. Supervised learning (\vec{x}^i, y^i) with i = 1...m and $\vec{x}^i \in \mathbb{R}$
- In supervised, regression Y = [y_i] ∈ ℝ and classification y_i ∈ label₁, label₂, ... are the most common problems.

Type of learning

Online vs. Offline \to in On-line samples arrive through time meanwhile in Offline all are processed at the same time

Getting the "right" data set

When dealing with X we should keep in mind

- Missing values?
 - Imputation
- Balanced?
 - Resampling, Boosting, Weighing...
- Noise or Outliers?

Regarding the variables

- Feature selection
- Feature extraction

Getting the "right" data set (II)

Define Train, Test and Validation data sets

Why?

To avoid overfitting and select the best model from the different options

Model design

- ► Each model has its own hyperparameters → difficult (or impossible in some cases) to find out optimal configuration
- Use metaheuristics to perform the optimization
 - Genetic algorithms
 - Genetic programming
 - Ant Colony
 - Swarm Particle
 - Tabu search
 - Simulated annealing
 - ► ...

► Idea: inputs with similar values will have similar outputs Using all data available $\{(\vec{x_i}, y_i)\}_{i=1}^{D}$ compute

$$\hat{F}(\vec{(x)};k) = \frac{1}{k} \sum_{j=1}^{k} y_{NN_j(\vec{x})}$$
 (1)

where $NN_j(\vec{x})$ is the j-th closest neighbour to \vec{x}

Weighted k-Nearest Neighbours

The closer the neighbour is the higher should be the influence

$$F_{WkNN}(\vec{(x)};k) = \frac{\sum_{j=1}^{k} w_j(\vec{x}) y_{NN_j(\vec{x})}}{\sum_{j=1}^{k} w_j(\vec{x})}$$
(2)

where $w_j(\vec{x}) = (1 - d_j^2(\vec{x})/d_{k+1}^2(\vec{x})^2$ and $d_j(\vec{x})$ the distance of \vec{x} to the j-th closest neighbour.

Kernelised version

The distance can be replaced by a kernel obtaining a feature space like with kernel methods.

Fuzzy Models

They try to model the human way of thinking by using fuzzy sets and fuzzy models

IF T is "cold" AND Wind is "strong" THEN Sensation IS = "Very Cold" IF T is "hot" THEN Sensation IS = "OK"

IF T is "cold" AND Wind is "soft" THEN Sensation IS = "Cold"

Fuzzy Models: Takagi-Sugeno-Kang (TSK)

The rule consequents are functions (instead of fuzzy sets) using the variables in the rule antecedent. Several types depending on the function computed:

• TSK-0:
IF
$$x^{(1)}$$
 is A AND $x^{(2)}$ is B then $z = R$
 $\hat{F}(\vec{x}) = \frac{\sum_{j=1}^{\#rules} \alpha_j \vec{x} R_j}{\sum_{j=1}^{\#rules} \alpha_j \vec{x}}$
• TSK-1:
IF $x^{(1)}$ is A AND $x^{(2)}$ is B then $z = b + a\vec{x}$
 $\hat{F}(\vec{x}) = \frac{\sum_{j=1}^{\#rules} \alpha_j \vec{x}(b_j + a_j \vec{x})}{\sum_{j=1}^{\#rules} \alpha_j \vec{x}}$

Support Vector Machines

The original idea was to find the hyperplane that separate the data in a linear way: $f(\vec{x}) = sign(\vec{w}^T \vec{x} + b)$.

As there could be infinite hyperplanes, SVM try to maximise the margin $(2/\vec{w})$, this is, to find out the support vectors. Thus, find \vec{w} and b such as $\forall (\vec{x}^{(i)}, y^{(i)}, i = 1...D, y^{(i)}(\vec{w}^T \vec{x}^{(i)} + b) \ge 1$ minimising $\frac{1}{2} ||\vec{w}||^2$.

Applying Lagrange multipliers we have:

$$L_{p} = \frac{1}{2} ||\vec{w}||^{2} - \sum_{i=1}^{D} \alpha_{i} [y^{(i)} (\vec{w}^{T} \vec{x^{(i)}} + b) - 1]$$

considering: 1) $\sum \alpha_i y^{(i)} = 0$ 2) $\alpha_i \ge 0 \forall \alpha_i$

Extensions

We can allow some misclassifications : Minimise $\frac{1}{2}||\vec{w}||^2 + C \sum_{i=1}^{D} \xi_i$ We can use the "kernel trick" and map \vec{x} to a feature space where it might be (more) linearly separable. 12/24

Neural Networks

A (simplified) model of natural neural networks Natural

Neural Network

1

¹ Images: https://encrypted-tbn0.gstatic.com/images?q=tbn: ANd9GcSbb2Van-e2T24h3Z44c-HfUr4PXu-LcCNs3Gg20VdT3_aY1dR9ng http://cs231n.github.io/neural-networks-1/

Neural Networks: A Neuron (Perceptron)

Given $(\vec{x}^{(i)}, y^{(i)})$ with i = 1...D and $\vec{x}^{(i)} \in \mathbb{R}$ define:

$$h_{\vec{w},b}(\vec{x}) = f(\vec{w}^T \vec{x} + b) = f(\sum_{i=1}^d w_i x_i + b)$$
(3)

where f is called activation function.

Most common activation function for DL is ReLU (Rectified Linear Unit)

- Strong biological basis
- Computational advantages (solves the vanishing gradient if x_i becomes too large as its derivative is constant)

Neural Networks: A simple network

Parameters: (\vec{w}, b) Notation:

....

 w^(l)_{ij} = weight for connection between unit j in layer l and unit i in layer (l + 1)

•
$$b_i^{(l)} =$$
 bias for unit *i* in layer $l+1$

• $a^{(l)} =$ activation (output value) of unit *i* in layer *l*.

Thus,
$$h_{\vec{w},b}(x) = a_1^{(3)}$$
 which is:
 $a_1^{(3)} = f(w_{11}^{(2)}a_1^{(2)} + w_{12}^{(2)}a_2^{(2)} + w_{13}^{(2)}a_3^{(2)} + b_1^{(2)})$ and
 $a_1^{(2)} = f(w_{11}^{(1)}x_1 + w_{12}^{(1)}x_2 + w_{13}^{(1)}x_3 + b_1^{(1)})$

Learning the net parameters: Stochastic Gradient Descent

Let's assume that the inputs are independent and identically distributed (I.I.D) in a distribution \mathcal{D} . Define an error function J(w, b; x, y) to determine how good is the approximation as

$$1/2||h_{w,b}(x) - y||^2 + \lambda/2 \sum_{l} \sum_{i} \sum_{j} (w_{ij}^{(l)})^2$$
(4)

First term controls the squared error, the second controls the weight decay to avoid overfitting.

Thus, we have to find w, b that minimise $E_{(x,y)\sim\mathcal{D}}[J(w,b;x,y)]$

Learning the net parameters: Stochastic Gradient Descent

while(stopcondition)

1. get next sample
$$(\vec{x}^{(i)}, y^{(i)})$$

2. update $\vec{w}_j^l k = \vec{w}_j^l k - \alpha \frac{\partial J(w, b, \vec{x}^{(i)}, y^{(i)})}{\partial \vec{w}_j^l k}$
3. update $b_j^l = b_j^l - \alpha \frac{\partial J(w, b, \vec{x}^{(i)}, y^{(i)})}{\partial b_j^l}$

Improvements

1) The learning rate (α) can be dynamically adapted computing a momentum, see Adam algorithm.

2) We can determine the batch size to find a compromise between computing speed and data quality

Learning the net parameters: Backpropagation

How we can compute $\partial J(w, b, \vec{x}^{(i)}, y^{(i)})$ respect w and $b ? \rightarrow$ using backpropagation.

Let δ_i^l be the parameter that determines how responsible is unit *i* in layer *l* of the error *L*. In the last layer $\delta_i^{(nl)}$ depends on $h_{w,b}$ and *Y*, this is $\delta_i^{(nl)} = -(y - a_i^{nl})f'(z_i^{(nl)})$, in the previous layers l = nl - 1, ..., 2:

$$\delta_i^{(l)} = (\sum_j w_{ji}^{(l)} \delta_j^{(l+1)}) f'(z^{(l)})$$
(5)

With δ known, we can update parameters with:

$$w_{ij}^{(l)} = w_{ij}^{(l)} - \alpha (a_j^{(l)} \delta_i^{(l+1)} + \lambda w_{ij}^{(l)})$$

$$b_i^{(l)} = b_i^{(l)} - \alpha a_j^{(l)} \delta_i^{(l+1)}$$

Thus, before each update step, we have to make a forward propagation to compute the loss and the activation functions *a*.

How to design an ANN?

We have the way to set the weights and bias but...

- Activation function (and its paremeters)
- Number of units (width)
- Number of layers (depth)
- Regularisation (i.ex. dropout)
- hyperparameters initialization

There is no closed form or optimal solution up to day, remains an "art" $% \left({{{\mathbf{r}}_{\mathrm{s}}}_{\mathrm{s}}} \right)$

Using a metaheuristic: Genetic algorithms

The number of layers and units are quite important: provide accuracy and generalisation

How to select them? Random? No, better to use evolution

Idea: the combination (crossover) of two good networks might improve the results

Using a metaheuristic: Genetic algorithms (II) Nature Artificial

Cromosome= [3,0,5,2,1] Phenotype = Mean Squared Error Genotype

Evolution through generations and time

Parameters that could be evolved

Number of layers, Number of units, Activation function, epochs, etc. \rightarrow the GA needs its own parameters: operators, selection, individuals,...

²Images sources:

https://www.researchgate.net/publication/292262701/figure/fig2/AS:323489350340609@1454137279164/Chromosomalorganization-of-a-eukarvotic-gene-in-which-exons-coding-regions-are.png

Other uses for these metaheuristics: dimensionality reduction

Consider the use of multiobjective optimisation (i.ex. small but significant number of variables)

Efficient implementation possibilities: intrinsically parallel Island model (with specialization) \rightarrow Migration operator

Given some simulations (CORSIKA), Can we build a model that identifies the type of particle?

Type of problem: what is identification? Regression multi-label classification multi-probability ensemble of binary classification

Other applications

Monitoring LATTES input!

Conclusions and Future Work

Conclusion

It is possible to apply ML successfully to some of the problems in astrophysics. However, a big advance could come dealing with unsupervised learning.

Future work : Autoencoders

Unsupervised learning ("blended"...) There are no y_i so we create them by $y^{(i)} = \vec{x}^{(i)}$, thus $h_{\vec{x},b}(x) = x$ Impose constrain that units should not activate, this is: $E_{\vec{x}\sim\mathcal{D}}[a_i^{(l)}] = \rho$ with $\rho \approx -1$ (inactive) Therefore, the net will represent the distribution