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Approximate Definition

» Machine learning

» A wide variety of techniques, technologies and models to
tackle problems like:Classification, Natural Language
Processing, Regression, Games, etc

» “What separates machine learning from optimization is that
we want the generalization error , also called the test error, to
be low aswell”

» Soft Computing:
it is a meta discipline, also known as Computational
Intelligence, which includes metaheuristics and bioinspired
systems as well
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Types of problems

» According to the INPUT given to the algorithm
» Unsupervised X = [X/] with i = 1...m and X' € R vs.
Supervised learning (X', y') with i = 1...m and X' € R
> In supervised, regression Y = [y;] € R and classification
Vi € label, label, ... are the most common problems.

Type of learning

Online vs. Offline — in On-line samples arrive through time
meanwhile in Offline all are processed at the same time
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Getting the "right” data set

When dealing with X we should keep in mind
» Missing values?
» Imputation
» Balanced?
» Resampling, Boosting, Weighing...

» Noise or Outliers?
Regarding the variables

» Feature selection
» Feature extraction
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Getting the "right" data set (Il)
Define Train, Test and Validation data sets

. \
Train —> —@/.
Validation [ T

Test [
Why?

To avoid overfitting and select the best model from the different
options
A

MSE

Validation Error

Train Error

»
>

Model complexity
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Model design

» Each model has its own hyperparameters — difficult (or
impossible in some cases) to find out optimal configuration
> Use metaheuristics to perform the optimization
» Genetic algorithms
» Genetic programming
» Ant Colony
» Swarm Particle
» Tabu search
» Simulated annealing
>



k-Nearest Neighbours

> ldea: inputs with similar values will have similar outputs

Using all data available {(x;,y;)}2; compute
- 1K

F((x); k) = Ezy/wvj(z)
j=1

where NN;(X) is the j-th closest neighbour to X
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Weighted k-Nearest Neighbours

» The closer the neighbour is the higher should be the influence

S wi(R)yww(3)
Zf:l w;(X)

where w;(X) = (1 — a’jz()?)/d,irl(%)2 and d;(X) the distance of X to
the j-th closest neighbour.

Foin((x); k) = (2)

Kernelised version

The distance can be replaced by a kernel obtaining a feature space
like with kernel methods.
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Fuzzy Models

They try to model the human way of thinking by using fuzzy sets
and fuzzy models

IF T is "cold" AND Wind is "strong" THEN Sensation IS ="Very Cold"
IF T is "hot" THEN Sensation IS = "OK"
IF Tis "cold" AND Wind is "soft" THEN Sensation IS = "Cold"

Fr== | | e = e

=== e o 1]
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Fuzzy Models: Takagi-Sugeno-Kang (TSK)

The rule consequents are functions (instead of fuzzy sets) using
the variables in the rule antecedent. Several types depending on
the function computed:

» TSK-0:
IF x(1) s A AND x(2) is B then z=R
AR = S
» TSK-1:
IF x(1) is /i/IAND x(2) is B then z = b+ ax
Boon I aiR(by+aR)
F(X
( ) Z#ru/es j_’
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Support Vector Machines

The original idea was to find the hyperplane that separate the data
in a linear way: f(X) = sign(w’x + b).

As there could be infinite hyperplanes, SVM try to maximise the
margin (2/w), this is, to find out the support vectors. Thus, find
w and b such as V(x(), y() i = 1..D,y(wTx() + p) > 1
minimising 3||w|°.

Applying Lagrange multipliers we have:

D
1 ~112 Ny =T 7.
Lo = Sl = > iy P (@7 + b) 1]

i=1
considering: 1) Za;y(i) =02) aj > 0V
Extensions
We can allow some misclassifications : Minimise
HIw|? + CZ,-Dzl & We can use the "kernel trick” and map X to a
feature space where it might be (more) linearly separable.
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Neural Networks

A (simplified) model of natural neural networks

Natural Artificial
Zo wy
impulses carried Son o 3 reuer® synapse
‘toward cell body Wy
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of axon
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function
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cell body’

Neural Network

1
Images: https://encrypted-tbn0.gstatic.com/images?q=tbn:
ANd9GcSbb2Van-e2T24h3Z44c-Hf Ur4PXu-LcCNs3Gg20VdT3_aY1dR9ng
http://cs231n.github.io/neural-networks-1/
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Neural Networks: A Neuron (Perceptron)

Given (X, y(D) with i = 1...D and x{) € R define:
d
hap(X) = F(WT X+ b) = F(D_ wixi + b) (3)
i=1

where f is called activation function.

Most common activation function for DL is ReLU (Rectified Linear
Unit)
» Strong biological basis

» Computational advantages (solves the vanishing gradient if x;
becomes too large as its derivative is constant)
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Neural Networks: A simple network

Layer 1

Parameters: (w, b)

Notation:
(! _ weight for connection between unit j in layer / and

ij
unit / in layer (/ + 1)
» b\ = bias for unit i in layer / + 1
= activation (output value) of unit 7 in layer /

Thus, hy»(x) = a{3) which is:
) — FwDa® & @D 1 a2 4 5D and

agz) = f(W(l)Xl + W1(2)X2 + Wl(é)X3 + bgl))

15 /24



Learning the net parameters: Stochastic Gradient Descent

Let's assume that the inputs are independent and identically
distributed (1.1.D) in a distribution D.

Define an error function J(w, b; x, y) to determine how good is the
approximation as

1/2|[ A 5(x) — yI? + A/zzzz ()y2 (4)

First term controls the squared error, the second controls the
weight decay to avoid overfitting.

Thus, we have to find w, b that minimise E(, ,y.p[J(w, b; x, y)]
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Learning the net parameters: Stochastic Gradient Descent

while(stopcondition)
1. get next sample (X(1), (1)

— = (i -
2. update lek = Wj/k _ 9 (w,b,x,y 1)

:<ﬁ

3. update bj = bJ’- -«

Improvements

1) The learning rate («) can be dynamically adapted computing a
momentum, see Adam algorithm.

2) We can determine the batch size to find a compromise between
computing speed and data quality
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Learning the net parameters: Backpropagation

How we can compute dJ(w, b, X(7), y()) respect w and b ? —
using backpropagation.
Let 6,( be the parameter that determines how responsible is unit /

(nf)

in layer / of the error L. In the last layer §;
Y, this is 55"1) =—(y - a,’-”)f’(z,-("l)), in the previous layers
[=nl—1,..2:

depends on h,, ;, and

ZWU 641 +1))f'(z11) (5)
With 6 known, we can update parameters with:

/ 1) (41 I
W,E) = W(/)—a(aj()@(Jr )—i-)\ ())
(N _ 4 aaDsl+D)
b;’ = b;l) — oa; d;
Thus, before each update step, we have to make a forward
propagation to compute the loss and the activation functions a.
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How to design an ANN?

We have the way to set the weights and bias but...

» Activation function (and its paremeters)
» Number of units (width)

» Number of layers (depth)

» Regularisation (i.ex. dropout)

> hyperparameters initialization

There is no closed form or optimal solution up to day, remains an
Y art”

19 /24



Using a metaheuristic: Genetic algorithms

The number of layers and units are quite important: provide
accuracy and generalisation

How to select them? Random? No, better to use evolution

Idea: the combination (crossover) of two good networks might
improve the results

// ;\ivelection / _\ J/ ;\\\
=

[ — — [ -
: H ,_l‘,—-’_ ‘: : }
\ e _ CrOSSOVEr | — | —
\ — \ / \ /
N [ _/ _/
Po Mutation P1 Pn
Time >
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Using a metaheuristic: Genetic algorithms (1)
Nature Atrtificial

5 Cromosome= [3,0,5,2,1]

Phenotype = Mean Squared Error
Genotype

Intron Exon

Exon

cstiRy = 2

Evolution through generations and time Evolution through generations andtime

Parameters that could be evolved

Number of layers, Number of units, Activation function, epochs,
etc. — the GA needs its own parameters: operators, selection,
individuals,...

2

2Images sources:
https://www.researchgate.net/publication /292262701 /figure/fig2/AS:323489350340609©@1454137279164 / Chromosomal-
organization-of-a-eukaryotic-gene-in-which-exons-coding-regions-are.png 21/24
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Using a metaheuristic: Genetic algorithms (III)

Other uses for these metaheuristics: dimensionality reduction

Consider the use of multiobjective optimisation (i.ex. small but
significant number of variables)

Efficient implementation possibilities: intrinsically parallel Island
model (with specialization) — Migration operator



Defining the problem

Given some simulations (CORSIKA), Can we build a model that
identifies the type of particle?

Type of problem: what is identification? Regression multi-label
classification multi-probability ensemble of binary classification

Other applications
Monitoring LATTES input!
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Conclusions and Future Work

Conclusion

It is possible to apply ML successfully to some of the problems in
astrophysics. However, a big advance could come dealing with
unsupervised learning.

Future work : Autoencoders

Unsupervised learning (“blended”...) There are no y; so we create
them by y(i) = %{i), thus hg (x) = x Impose constrain that units
should not activate, this is: E;ND[a,(I)] = p with p &~ —1 (inactive)
Therefore, the net will represent the distribution
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