
Introduction to Deep Neural Networks and their
application to Physics

Alberto Guillén and Luis Javier Herrera

University of Granada

14 September 2018

1 / 24

Contents

I Introduction to Machine Learning and Deep Learning

I Application Example

I Conclusions and Future work

2 / 24

Approximate Definition

I Machine learning
I A wide variety of techniques, technologies and models to

tackle problems like:Classification, Natural Language
Processing, Regression, Games, etc

I “What separates machine learning from optimization is that
we want the generalization error , also called the test error, to
be low aswell”

I Soft Computing:
it is a meta discipline, also known as Computational
Intelligence, which includes metaheuristics and bioinspired
systems as well

3 / 24

Types of problems

I According to the INPUT given to the algorithm
I Unsupervised X = [~x i] with i = 1...m and ~x i ∈ R vs.

Supervised learning (~x i , y i) with i = 1...m and ~x i ∈ R
I In supervised, regression Y = [yi] ∈ R and classification

yi ∈ label1, label2, ... are the most common problems.

Type of learning

Online vs. Offline → in On-line samples arrive through time
meanwhile in Offline all are processed at the same time

4 / 24

Getting the ”right” data set

When dealing with X we should keep in mind
I Missing values?

I Imputation

I Balanced?
I Resampling, Boosting, Weighing...

I Noise or Outliers?

Regarding the variables

I Feature selection
I Feature extraction

5 / 24

Getting the ”right” data set (II)
Define Train, Test and Validation data sets

Why?

To avoid overfitting and select the best model from the different
options

6 / 24

Model design

I Each model has its own hyperparameters → difficult (or
impossible in some cases) to find out optimal configuration

I Use metaheuristics to perform the optimization
I Genetic algorithms
I Genetic programming
I Ant Colony
I Swarm Particle
I Tabu search
I Simulated annealing
I ...

7 / 24

k-Nearest Neighbours

I Idea: inputs with similar values will have similar outputs

Using all data available {(~xi , yi)}Di=1 compute

F̂ (~(x); k) =
1

k

k∑
j=1

yNNj (~x) (1)

where NNj(~x) is the j-th closest neighbour to ~x

8 / 24

Weighted k-Nearest Neighbours

I The closer the neighbour is the higher should be the influence

ˆFWkNN(~(x); k) =

∑k
j=1 wj(~x)yNNj (~x)∑k

j=1 wj(~x)
(2)

where wj(~x) = (1− d2
j (~x)/d2

k+1(~x)2 and dj(~x) the distance of ~x to
the j-th closest neighbour.

Kernelised version
The distance can be replaced by a kernel obtaining a feature space
like with kernel methods.

9 / 24

Fuzzy Models

They try to model the human way of thinking by using fuzzy sets
and fuzzy models

10 / 24

Fuzzy Models: Takagi-Sugeno-Kang (TSK)

The rule consequents are functions (instead of fuzzy sets) using
the variables in the rule antecedent. Several types depending on
the function computed:

I TSK-0:
IF x (1) is A AND x (2) is B then z = R

F̂ (~x) =
∑#rules

j=1 αj~xRj∑#rules
j=1 αj~x

I TSK-1:
IF x (1) is A AND x (2) is B then z = b + a~x

F̂ (~x) =
∑#rules

j=1 αj~x(bj+aj~x)∑#rules
j=1 αj~x

11 / 24

Support Vector Machines
The original idea was to find the hyperplane that separate the data
in a linear way: f (~x) = sign(~wT~x + b).

As there could be infinite hyperplanes, SVM try to maximise the
margin (2/~w), this is, to find out the support vectors. Thus, find
~w and b such as ∀(~x (i), y (i), i = 1...D, y (i)(~wT~x (i) + b) ≥ 1
minimising 1

2 ||~w ||
2.

Applying Lagrange multipliers we have:

Lp =
1

2
||~w ||2 −

D∑
i=1

αi [y
(i)(~wT ~x (i) + b)− 1]

considering: 1)
∑
αiy

(i) = 0 2) αi ≥ 0∀αi

Extensions
We can allow some misclassifications : Minimise
1
2 ||~w ||

2 + C
∑D

i=1 ξi We can use the ”kernel trick” and map ~x to a
feature space where it might be (more) linearly separable. 12 / 24

Neural Networks

A (simplified) model of natural neural networks

1

1
Images: https://encrypted-tbn0.gstatic.com/images?q=tbn:

ANd9GcSbb2Van-e2T24h3Z44c-HfUr4PXu-LcCNs3Gg2OVdT3_aY1dR9ng

http://cs231n.github.io/neural-networks-1/

13 / 24

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSbb2Van-e2T24h3Z44c-HfUr4PXu-LcCNs3Gg2OVdT3_aY1dR9ng
https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSbb2Van-e2T24h3Z44c-HfUr4PXu-LcCNs3Gg2OVdT3_aY1dR9ng
http://cs231n.github.io/neural-networks-1/

Neural Networks: A Neuron (Perceptron)

Given (~x (i), y (i)) with i = 1...D and ~x (i) ∈ R define:

h~w ,b(~x) = f (~wT~x + b) = f (
d∑

i=1

wixi + b) (3)

where f is called activation function.

Most common activation function for DL is ReLU (Rectified Linear
Unit)

I Strong biological basis

I Computational advantages (solves the vanishing gradient if xi
becomes too large as its derivative is constant)

14 / 24

Neural Networks: A simple network

Parameters: (~w , b)
Notation:

I w
(l)
ij = weight for connection between unit j in layer l and

unit i in layer (l + 1)

I b
(l)
j = bias for unit i in layer l + 1

I a(l) = activation (output value) of unit i in layer l .

Thus, h~w ,b(x) = a
(
13) which is:

a
(3)
1 = f (w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3 + b

(2)
1) and

a
(2)
1 = f (w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3 + b

(1)
1)

15 / 24

Learning the net parameters: Stochastic Gradient Descent

Let’s assume that the inputs are independent and identically
distributed (I.I.D) in a distribution D.
Define an error function J(w , b; x , y) to determine how good is the
approximation as

1/2||hw ,b(x)− y ||2 + λ/2
∑
l

∑
i

∑
j

(w
(l)
ij)2 (4)

First term controls the squared error, the second controls the
weight decay to avoid overfitting.

Thus, we have to find w , b that minimise E(x ,y)∼D[J(w , b; x , y)]

16 / 24

Learning the net parameters: Stochastic Gradient Descent

while(stopcondition)

1. get next sample (~x (i), y (i))

2. update ~w l
j k = ~w l

j k − α
∂J(w ,b,~x(i),y (i))

∂ ~w l
j k

3. update blj = blj − α
∂J(w ,b,~x(i),y (i))

∂blj

Improvements

1) The learning rate (α) can be dynamically adapted computing a
momentum, see Adam algorithm.
2) We can determine the batch size to find a compromise between
computing speed and data quality

17 / 24

Learning the net parameters: Backpropagation
How we can compute ∂J(w , b, ~x (i), y (i)) respect w and b ? →
using backpropagation.
Let δli be the parameter that determines how responsible is unit i

in layer l of the error L. In the last layer δ
(nl)
i depends on hw ,b and

Y , this is δ
(nl)
i = −(y − anli)f ′(z

(nl)
i), in the previous layers

l = nl − 1, ..., 2:

δ
(l)
i = (

∑
j

w
(
ji l)δ

(
j l + 1))f ′(z(l)) (5)

With δ known, we can update parameters with:

w
(l)
ij = w

(
ij l)− α(a

(l)
j δ

(l+1)
i + λw

(l)
ij)

b
(l)
i = b

(
i l)− αa

(l)
j δ

(l+1)
i

Thus, before each update step, we have to make a forward
propagation to compute the loss and the activation functions a.

18 / 24

How to design an ANN?

We have the way to set the weights and bias but...

I Activation function (and its paremeters)

I Number of units (width)

I Number of layers (depth)

I Regularisation (i.ex. dropout)

I hyperparameters initialization

There is no closed form or optimal solution up to day, remains an
”art”

19 / 24

Using a metaheuristic: Genetic algorithms

The number of layers and units are quite important: provide
accuracy and generalisation

How to select them? Random? No, better to use evolution

Idea: the combination (crossover) of two good networks might
improve the results

20 / 24

Using a metaheuristic: Genetic algorithms (II)

Parameters that could be evolved
Number of layers, Number of units, Activation function, epochs,
etc. → the GA needs its own parameters: operators, selection,
individuals,...
2

2
Images sources:

https://www.researchgate.net/publication/292262701/figure/fig2/AS:323489350340609@1454137279164/Chromosomal-
organization-of-a-eukaryotic-gene-in-which-exons-coding-regions-are.png
http://kingdomology.org/wp-content/uploads/2015/02/01-evolutionary-chain.jpg

21 / 24

Using a metaheuristic: Genetic algorithms (III)

Other uses for these metaheuristics: dimensionality reduction

Consider the use of multiobjective optimisation (i.ex. small but
significant number of variables)

Efficient implementation possibilities: intrinsically parallel Island
model (with specialization) → Migration operator

22 / 24

Defining the problem

Given some simulations (CORSIKA), Can we build a model that
identifies the type of particle?
Type of problem: what is identification? Regression multi-label
classification multi-probability ensemble of binary classification

Other applications

Monitoring LATTES input!

23 / 24

Conclusions and Future Work

Conclusion
It is possible to apply ML successfully to some of the problems in
astrophysics. However, a big advance could come dealing with
unsupervised learning.

Future work : Autoencoders
Unsupervised learning (“blended”. . .) There are no yi so we create
them by y (i) = ~x (i), thus h~x ,b(x) = x Impose constrain that units

should not activate, this is: E~x∼D[a
(l)
i] = ρ with ρ ≈ −1 (inactive)

Therefore, the net will represent the distribution

24 / 24

	Introduction
	Introduction to ML
	ML: Approximate Definition
	Preprocessing

	ML: popular models
	Model design
	k-NN
	Fuzzy Models
	Support Vector Machines
	Neural Networks

	Application to Particle Classification

