LATTES

Large Array Telescope for **Tracking Energetic Sources**

Fundação para a Ciência e a Tecnologia

Mário Pimenta September 2018

Wide Field of View Gamma Ray Observatories

Wide Field of View Gamma Ray Observatories

The Energy challenge

Differential sensitivity to steady sources in one year

Why low energies are so difficult?

Cumulative LDFs

100, 500, 5000 GeV

Number of particles at 100 GeV is quite low! The large majority are photons

High background !

Crab vs cosmic rays

Event rate (1°x1°) above a given energy on a perpendicular surface of 10 000 m²

Key factors

- altitude
- Segmentation
- Detector unit trigger threshold
- Time resolution
- Area
- FoV
- Reliability and good control of systematics
- Standalone operation
- Cost

LATTES

Large Array Telescope for Tracking Energetic Sources Energy range 50/100 GeV – 100 TeV

Brazil / ITALY/ Portugal/ Czech Republic (China) /(Spain)

Contents lists available at ScienceDirect
Astroparticle Physics
journal homepage: www.elsevier.com/locate/astropartphys

Astroparticle Physics 99 (2018) 34-42

Design and expected performance of a novel hybrid detector for very-high-energy gamma-ray astrophysics

Science Case

See talk Giovanni la Mura

Gamma-ray physics

- Flares and transient sources (GRBs, jets from AGNs ...).
- Extended photon sources (Galactic Center, Fermi bubbles, ...)
- Indirect dark matter (DM) searches.

Multi-Messenger (astro)physics

- Electromagnetic counterparts of extreme energy phenomena :
 - Gravitational Waves.(NS-NS, NS-BH, BH-BH mergers)
 - Neutrino bursts

Cosmic-ray physics

- Electrons + positrons spectra
- Cosmic rays up to the first "knee"

LATTES concept: an hybrid detector

RPCs : time and spatial resolutionWCDs: e.m. energy, g/h discrimination and trigger

MARTA RPCs

Very low gas flux, outdoor operation

MARTA RPCs: assembled unit Integrated electronics and HV

MARTA RPCs - Lab tests

60 MARTA RPC units produced and tested at Coimbra

After 8 months operating at 1 cc/min no undesirable effects were observed in the chamber performance,

Tests in the Pampa

Efficient and stable detector

15

End-to-end Simulation/Analysis chain

See talk Bernardo Tomé

Performance

See talk Ruben Conceição

| /

Sensitivity

Differential sensitivity to steady sources in one year

South Observatory proposals

ALTO project : Linnaeus University (Sweden)

WCDs + scintilators

white book on the science case

LATTES : Brasil, Italy, Portugal, Czech Republic

WCDs + RPCs

We should converge to a single proposal !

A wide field of view gamma-ray observatory in South America will be built!

When? How?

- A broad energy range : From satellites to the highest energies
- Complementarity to: CTA, IceCube, KM3NET, GW observatories (transients, sources variability, extended sources ...)
- Build on the experience of successful observatories: Argo, HAWC, Auger, ...
- Low maintenance / reasonable cost

Sensitivity

Differential sensitivity to steady sources as a function of time

LATTES Group

- Brazil CBPF
- ITALY Padova and Rome
- Portugal : LIP
- Czech Republic : Institute Physics, Academy of sciences
- (China: Tsinghua University)
- (Spain: Granada)

Baseline design : the unit station

Thin lead plate

- To convert the secondary photons
- Improve angular reconstruction

Resistive Plates Chamber

- Sensitive to charged particles
- Good time and spatial resolution
- Improve geometric reconstruction
- Explore shower particle patterns at ground

- Water Cherenkov Detector

- Sensitive to secondary photons and charged particles
- Measure energy flow at ground
- Improve trigger capability
- Improve gamma/hadron discrimination

Baseline design : the unit station

Resistive Plate Chambers (RPC)

- 2 RPCs per station
- Each RPC with 4x4 readout pads

Water Cherenkov Detector (WCD)

- 2 PMTs; 15 cm diameter
- inner walls covered with white diffusing Tyvek

MARTA RPCs (construction details)

Signal-transparent and nice-looking acrylic box, 1mm thick covers Permanently glued RPC fits tightly inside

- ✓ good electrode support mechanics
- ✓ excellent HV insulation
- ✓ excellent gas tightness

HV layer, also signal-transparent

3 RPC glasses (2mm soda-lime)

External pickup electrodes

RPCs – basic structure

<u>The current is limited by the resistive electrodes: no sparks by construction</u> > very safe detector, although limited to low particle rates (~2kHz/cm²) > excellent efficiency (99%), <u>time</u> (~50 ps) and position resolution (~100µm)

RPCsResistive Plate Chamber

- Gaseous detector
- Planar geometry
- uniform electrical field imposed.
- High resistive plates in between the electrodes limit the avalanche current.
- Signal is picked up by the induction of the avalanche in the readout pads.

Avalanche mode

