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» High-energy physics = Multiparticle production (multiplicity ~ 10! - 102+)

» To first approximation, all processes have a simple structure at the level of
interactions between the fundamental objects of nature, 1.e. quarks, leptons
and gauge bosons. <

» Corrections include: e

» Other complementary processes,

‘ 0
» Hadronization,
» Collective behaviour, ...

Not easy to evaluate through
analytical calculations...
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Introduction | LRSS ks

Picture becomes more
complex, but original
physics remains

(skeleton process has
been dressed up and 1s no
longer directly visible)

Event Generators
to the rescue!

Pb-Pb v/SNN = 2.76 TeV
run: 137171, 2010-11-09 00:12:13 6
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MC Event Generator

Problem 1

Problem 2

Factorization into simpler (and
reasonably accurate) components

Final Output

Same format as the real data
recorded by the detector

G

—

Output

Same average behaviour and
fluctuations as real data

‘events’

Detector performance (propagation,
magnetic field, shower calorimeter,

..)

Detector Simulation GEANT
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goes 1nto this process?
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High Energy Collision

» Focus on a specific problem:
high energy pp collision. What «*
goes 1nto this process?

» Incoming beams (protons).\‘.ig.\-

- ~—

» Hard Process (high e
energy interaction e Vo
between two partons, .";';:;0‘
one of each proton) ¢ ‘::.,4.:__

"o _

» Final (Initial) shower
evolution of the
interaction products

» Hadronization (confinement of
quarks and gluons into hadrons) ./‘

» Beam Remmnants and Multi-particle

Interactions (MPI) (rest of the collision)
8
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High Energy Collis

» How to describe such a process

» Factorising into simpler
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» Factorising into stmpler
problems:

» Hard scattering

» Initial-state shower
and final-state
shower

» MPI and Beam
Remnants

» | Hadronization




High Energy Collisio

» How to describe such a process
through an event generator?
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Hard Process

» Simple high energy process, like 2—1, 2—2, 2—3, ... that can be calculated |
analytically from first principles:

P1 P3

P1 e e P3

P2 P4

» What gives the main characteristics of the event

» SM: Hard QCD, Soft QCD, Heavy-Flavour, DIS, W/Z, Higgs
Production...

» BSM: Technicolor, Compositeness, SUSY, ...

» Given the topology and kinematics, one can evaluate the cross-section, G.

10
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parton distribution of the two incoming protons...
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Parton Distributions

» Initial topology and kinematics 1s not fixed, but rather sampled from the
parton distribution of the two incoming protons...
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» Initial topology and kinematics 1s not fixed, but rather sampled from the
parton distribution of the two incoming protons...
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Parton Distributions

» Initial topology and kinematics 1s not fixed, but rather sampled from the
parton distribution of the two incoming protons...

» Cross-section for a process ij — ki 04— = / dz; / dzy fi (21) 7 (22) Giji

N
/ Elementary cross-section

Parton Distribution Functions (PDFs) (hard process)

Probability to find
a parton ‘1’ inside
beam particle '1'

carrying a fraction

x1 of the total
momentum

proton “1” proton “2”

(dependent on the
hard process scale,

Q2)
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Parton Distributions

» Derivation from first principles does not yet exist. But its evolution, in QZ,
can be described analytically.

» Rely on

parameterisations: MSTW 2008 NLO PDFs (68% C.L.)

.2 I llllllll I llllllll I llllllll LILLLLRLLL A1.2 LA wl Ill.lllll I Illlllll LILLLLRLLL

» conjunction of %
experimental
data and
evolution
equations

» Once established,
(proton, Pb, Au, ...)
they are universal.

13



Initial- and Final-State Showers

» Corrections to generate multi-particle production, 2—3, 2—4, etc...

hard scattering

Qhard
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hard scatte

Initial- and Final-State Showers

» Corrections to generate multi-particle production, 2—3, 2—4, etc...
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Initial- and Final-State Showers -

» Corrections to generate multi-particle production, 2—3, 2—4, etc...

hard scattering
@

Qhard
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Initial- and Final-State Showers -

» Corrections to generate multi-particle production, 2—3, 2—4, etc...

hard scattering

Qhard

Gl
dyd?pr

= / Ao dzy fo(Ta, fog) fo(To, fir)

A0 ab—c(TaDas> ToPy, s fif, (s, DT/ )
dt

D! (z, i)

Fragmentation function (FF) of
parton ‘c’ into product ‘h’
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Initial- and Final-State Showers

» Two approaches to calculate additional radiation to the hard scattering:
» Matrix elements (few particle corrections but higher order)
» Parton shower (more particle corrections but LO and NLO only)

» Evolution equation based on splitting probabilities (SF)

Q28D°]§5;Q2) %éff ) / dZZPbM )0} (Z.¢?)

a(—b thQ)
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Initial- and Final-State Showers
» Two approaches to calculate additional radiation to the hard scattering:
» Matrix elements (few particle corrections but higher order)

» Parton shower (more particle corrections but LO and NLO only)

» Evolution equation based on splitting probabilities (SF)

aD’gngQ o, /dzz By u(z Dh( Q2)

o(2) D5 (2, Q7).
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Initial- and Final-State Showers
» Two approaches to calculate additional radiation to the hard scattering:
» Matrix elements (few particle corrections but higher order)

» Parton shower (more particle corrections but LO and NLO only)

» Evolution equation based on splitting probabilities (SF)

Q’ aD;(ngQ = / - Z Pyo(2)D} ( Q2)

Por(2) Dl (2, Q7).
b
—

Splitting Function (SF)

Probability of parton ‘b’ splits into
parton ‘a’ with a fraction of energy z
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» Event generators = Monte Carlo techniques
» Selection from a probability distribution function

» Veto algorithm
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Monte Carlo Techniques

» Quantum mechanics = amplitudes (concept of randomness)
» Event generators = Monte Carlo techniques

» Selection from a probability distribution function

Sudakov Form factor:

» Veto algorithm tr g4/ o
Alto, 1) :exp{—/ —/dz—SP(z)}
P 2T

t1 l
Just like a N(t) = exp {—/t dtf(t")dt J

radioactive decay! _
to t) ' S N(@) = Nye M

Given a random number, R, what 1s t;?

Probability of not decay between ty and t, At ty, 1t decays.
16



Initial- and Final-State Showers -
» Results into spray of partons/particles that will form jets;

» Resulting pattern will contribute to the event structure (2, 3,... jet event)

EXPERIMENT
Run: 313100
Event: 196478531
2016-11-18 23:23:28 CEST

0000 Y ) 0Y 03 05 7S
00 (

s | 9820 ®-c °
T e

—

tt event candidate

p+Pb \/Syn = 8.16 TeV, 3~ EF® = 33 GeV

electron: pr = 125 GeV 1 = 0.23 ¢ = 1.41 charge +
muon: pr =37.6 GeV 1y =-1.71 ¢ = 1.29 charge -1
b-jet 1: pr =99.4 GeV 1 = -1.65 ¢ = -0.51

b-jet 2: pr =66.8 GeV 1 =0.18 ¢ = 0.33

jet1: pr =98.6 GeV 1 =-0.60 ¢ = -2.80

jet 2: pr =61.3GeV n=-2.91 ¢ =-2.52
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MPI and Beam Remnants

» The 1nitiator shower of the hard scattering takes only a fraction of the total
beam energy. What is left behind 1s called the (coloured) beam remnant
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MPI and Beam Remnants

» The 1nitiator shower of the hard scattering takes only a fraction of the total
beam energy. What is left behind 1s called the (coloured) beam remnant
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MPI and Beam Remnaht'é':

» The 1nitiator shower of the hard scattering takes only a fraction of the total
beam energy. What is left behind 1s called the (coloured) beam remnant

>

¢ Beam Underlying
’ e R R .
— R Y Remnants event (bkg)

Initiator <

Showers <+ _ s 2oz ) o (Color connected
7 to the hard process)

» Dominant 2—2 QCD cross-sections are divergent for pr—0 but drop rapidly
for large pr.

» Probability of multiple parton
interactions 1s not negligible for
ep, pp or AA collisions
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Hadronization

» Mechanism that confines back quarks and gluons into hadrons;

» QCD perturbation theory, formulated in terms of quarks and gluons, 1s valid
at short distances only

» At long distances, in the confinement regime, coloured pardons are
transformed into hadrons, a process called hadronization (or fragmentation)

» Fragmentation process not understood from first principles (rely on
phenomenological models)

» All of them rely on the color flow between the constituents

19



Hadronization

» Mechanism that confines back quarks and gluons into hadrons;

e hard scattering

o
s
2 e partonic decays, e.g.
t — bW
0 4 - 99 - e parton shower
S~ 0 Q Y i
y A ® o < i evolution
(// ;.>;.-\\
N N
<
.
N\ e colo glets
S
\ e colourless clusters

e cluster fission

19



Summary

» Result of an Event

Generator:

‘Real’ event as if could

be observed by a
perfect detector.

>

» Output can be used

now to interface to the
detector simulation

20



More MC Event Generators

» Typical hadronic event generator (PYTHIA) contains the subprocesses
mentioned so far:

Problem 1

Problem 2
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More MC Event Generators

» Typical hadronic event generator (PYTHIA) contains the subprocesses

mentioned so far:
Hard Scattering

IS Shower FS Shower

PDFs FFs
» Other type of event generators include:

Beam Remnants/MPI Hadro
» Cosmic Rays (for Extensive Air Showers)

» Heavy-1ons (4 Nuclear initial-state, High multiplicity, soft processes, in-
medium energy loss, Collective behavior of the medium)

» Multi-purpose parton event generators (BSM physics)

21
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