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Neutrinos from Hell
TeV – PeV energy
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The promise of HE neutrinos

A hundred year puzzle: the 
cosmic ray spectrum

• Where do they come from?

https://faculty.washington.edu/wilkes/salta/balloon/
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The promise of HE neutrinos

A hundred year puzzle: the 
cosmic ray spectrum

• Where do they come from?
• Cosmic accelerators? Exotics?

• ν's most likely involved 

http://www.physics.utah.edu/~whanlon/spectrum.html

→ E ~ [TeV, PeV]
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http://starfishquay.blogspot.de/2013/11/the-era-of-neutrino-astronomy-has-begun.html
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IceCube: 
An instrument for neutrino astronomy

• Ice Cherenkov neutrino detector

• 5,160 DOMs

• 86 strings

• Spacing: 17m in z, 125 in x-y

• 1 km3 volume

• 1.5 – 2.5 km under ice

• At the geographic South Pole
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Detector calibration
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• LED flashers on each DOM

• In-ice calibration laser

• Minimum ionizing muons

• Moon shadow

• In-situ camera Moon shadow in cosmic rays in IC59



Neutrino detection in IceCube
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Neutrino event topologies
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track (data)

factor of ≈ 2 energy resolution 

Ang res. < 1° at high energies
cascade (data)

≈ ±15% deposited energy resolution

≈ 10° angular resolution (E>= 100 TeV)
Two cascades (E>10 PeV)

Not observed yet: τ decay 

length is 50 m/PeV



Neutrinos in IceCube
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Neutrinos in IceCube
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Astrophysical 
neutrino

Cosmic ray

Source of cosmic rays

*Not to scale

Atmosphere

Atmospheric 
neutrinos

Astrophysical neutrino searches use:
• Direction, energy, time
• Event topology
• Diffuse, point-source hypotheses

Atmospheric
muons



Isolating neutrinos

• Use the Earth as a shield
• Only neutrinos can come from “below”

• Look down, sacrifice half of the sky

• Use the detector to tag backgrounds
• Only neutrinos can “start” inside

• Sacrifice about half of your detector
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Diffuse, starting events

• Exploit different E spectra → focus on HE

• Use the detector as veto
• Accompanying muons
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Starting events: Most recent results

• Using 6 years of data

• 80(+2) events observed

• Estimated background:

• 15.6+11.4
-3.9 atm. neutrinos

• 25.2±7.3 atm. muons

• Two of them are an obvious 
(but expected) background:

• Coincident muons from two CR 
air showers
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High energy events
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Starting events: Energy spectrum

• Compatible with benchmark 
single power-law model. 

• Things might be more 
complicated, but this is not the 
analysis to decide that.

• Best fit spectral index 

(E-ɣ): ɣ=-2.92+0.33
-0.29

• E2ɸ = 2.46 ± 0.8 x 10-8 x   

(E / 100TeV)-0.92 GeV cm-2 s-1 sr-1
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Starting events: Zenith distribution

• Compatible with benchmark 
single power-law model. 

• Things might be more 
complicated, but this is not the 
analysis to decide that.

• Best fit spectral index 

(E-ɣ): ɣ=-2.92+0.33
-0.29

• E2ɸ = 2.46 ± 0.8 x 10-8 x   

(E / 100TeV)-0.92 GeV cm-2 s-1 sr-1
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Starting events: clustering (or the lack-of)

21



Through-going muons

• up-going (i.e. not a CR muon)

• deposited energy:2.6±0.3 PeV

• neutrino energy: 8.7 PeV (median) 

• date: June 11, 2014

• direction: 11.48° dec / 110.34° RA

• ApJ 833 (2016) no.1, 3
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Through-going muons

• Selected horizontal and up-going muon tracks

• Sensitive to astrophysical neutrinos above ~120 TeV

• power-law index: 2.19±0.10prompt component fits to zero
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Through-going muons: lack of clustering
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Alerts & follow-ups
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“The North”

PTF (optical)

SWIFT (X-ray)
Gamma ray telescopes 
(Veritas, HESS, MAGIC)



Astrophysical flux flavor composition

• Multiple predictions for astrophysical flavor

(νe:νμ:ντ)
• Standard pion+muon decay (1:2:0)

• Muon damped (0:1:0)

• Neutron decay (1:0:0)

• Detection flavor close to (1:1:1)
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Oscillations



Astrophysical flux flavor composition

• Simultaneous spectrum fit

(νe:νμ:ντ)
• Standard pion+muon decay (1:2:0)

• Muon damped (0:1:0)

• Neutron decay (1:0:0)
• Only one significantly excluded (3.7σ)

• No tau-neutrino signals yet
• Hard to identify

• Compatible with statistics
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ApJ 809, 98 (2015)/PoS(ICRC2015)1066 



Summary from hell

• Well established diffuse astrophysical neutrino flux observed

• Neutrinos found up to a few PeV

• Sources not yet identified

• Multi-messenger program in place looking for coincidences

• Identification of neutrino flavor ongoing – no HE tau neutrino yet

All studies are limited by statistics
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we need more events



Neutrinos from heaven
10-100 GeV
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Atmospheric neutrinos

• Some people’s background is another people’s signal
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Atmospheric neutrinos

• Free beam of neutrinos. Wide E range, varying travel distance.
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Neutrino oscillations in 2 minutes or less

Neutrino production
• definite flavor (associated l +/- )
• superposition of mass eigenstates

Propagation
• as massive states → phase exp(-ipx )
• traveling close together, maintain coherence

Ddetection (interaction)
• coherent sum of mass states
• associated l +/- determines flavor
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Caveat: influence of matter

• Scattering processes in ordinary matter

• In constant electron density
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Standard oscillations in matter

Survival probabilities for atmospheric neutrinos (no approximations)
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Standard oscillations in matter

Survival probabilities for atmospheric neutrinos (no approximations)
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And sterile neutrinos? They also fit

• Possibility: Additional neutrino state that doesn’t couple to W/Z
• New state mixes with known ones

• Ex: 3+1 → +3 mixing angles +1 phase

39



Sterile neutrino flux modifications

• For a higher mass difference 

→ higher E

• Additional sterile mixing + 
matter enhancements changes 
oscillation amplitudes also at 
low energies
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Probing oscillations

With atm. nu:

• large L&E regions of 
phase space

• 2 ν, anti-ν flavors in 
“beam”

• on/off signal regions

• E > τ threshold
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Added bonus: neutrino-nucleon xs

• High energy atmospherics: deep inelastic scattering regime
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Added bonus: neutrino-nucleon xs

• High energy atmospherics: deep inelastic scattering regime
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IceCube DeepCore

• 8 + 7 strings (DC + IC)

• About 500 DOMs in fid. vol.

• Spacing: 7m in z, 40-70m in x-y

• Neutrino energy threshold: 10 GeV

44



DeepCore events
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DeepCore events
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DeepCore events
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DeepCore events
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Analysis strategy

• Background
• Aggressive vetoing to reject muons

• Select starting events only

• Reconstruction
• 8D likelihood w/track+cascade

• Using detailed ice description

• Particle identification
• Ratio of track+cascade/cascade only fit

• Parameterize systematic effects
• Fit together with physics parameters
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Reconstruction resolutions
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Reconstruction resolutions
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Results: NuMu disappearance

• Analysis in L vs E space

• 48k events in 3 years

• χ2 = 117.4/119 dof

• Data driven background
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Phys. Rev. Lett. 120, 071801 (2018)
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Cascade-like

Track-like

Phys. Rev. Lett. 120, 071801 (2018)
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Results: NuTau appearance

• Let tau neutrino 
component float

• Slightly below 
expected value (1.0)

• Not significant yet
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Results: Sterile neutrinos - LE

• How would a sterile 
neutrino affect the 
sample?

57
Phys. Rev. D 95, 112002 (2017)



Results: Sterile neutrinos - HE

• How would a sterile 
neutrino affect the 
high energy sample?
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Phys. Rev. Lett. 117, 071801 (2016)



Summary from heaven

• Atmospheric neutrinos used for particle physics studies

• Events are hard to reconstruct, but we have thousands per year

• Measurements of standard oscillations improving rapidly

• Tau neutrinos from oscillations beginning to appear

• Exotic BSM ongoing: steriles, non-standard interaction, decoherence

Studies start to be limited by systematics
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we need more calibration sources



Looking into the future
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The IceCube Upgrade
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The IceCube Upgrade
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• More sensors in same volume
• Lower DeepCore E threshold

• Better oscillation physics

• New calibration sources
• Controlled light emission

• Improved ice description

• Better pointing at HE by factor 2

• Re-analysis of current HE data



A step further: IceCube Gen-2
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A step further: IceCube Gen-2
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Main detector

• +120 strings

• 240m inter-string distance

• 80 Oms per string

• 8 km3 volume

Extensions

• Surface array (CR and veto)

• Radio array (EHE neutrinos)



Final words

IceCube: a neutrino observatory from GeV to PeV energies
• Astrophysical neutrinos

• Neutrino oscillations

• Dark matter

• Cosmic ray physics

• …

More data and better calibration → constantly improving results

Upgrades proposed: maximize the science output at all energies
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