3. CP-violation in Extended Higgs sectors

R. Santos ISEL & CFTC-UL & LIP

Multi-Higgs day @ LIP

11 June 2018

Where do we stand? (In CPviolation measurements)

CP - what have ATLAS and CMS measured so far?

• Correlations in the momentum distributions of leptons produced in the decays

$$h \to ZZ^* \to (\overline{l_1}l_1) \ (\overline{l_2}l_2)$$
$$h \to WW^* \to (l_1v_1) \ (l_2v_2)$$

S.Y. CHOI, D.J. MILLER, M.M. MUHLLEITNER AND P.M. ZERWAS, PHYS. LETT. B 553, 61 (2003).

C. P. BUSZELLO, I. FLECK, P. MARQUARD, J. J. VAN DER BIJ, EUR. PHYS. J. C32, 209 (2004)

<u>The Higgs CP nature has only been established assuming that h_{125} is a CP eigenstate.</u>

ATLAS, 1307.1432

IF CP(H)=1, HZZ(WW) COUPLING IS JUST A CONSTANT RELATIVE TO THE SM ONE, REVERSE NOT TRUE!

$$g_{C2HDM}^{hVV} = \cos(\alpha_2)\cos(\beta - \alpha_1) g_{SM}^{hVV}$$

CP - what have ATLAS and CMS measured so far?

• Effective Lagrangian (ATLAS notation) ATLAS, 1506.05669

$$\mathcal{L}_{0}^{V} = \left\{ \cos(\alpha) \kappa_{\text{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] - \frac{1}{4} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \sin(\alpha) \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \right\} X_{0}$$

Here V^{μ} represents the vector-boson field ($V = Z, W^{\pm}$), the $V^{\mu\nu}$ are the reduced field tensors and the dual tensor is defined as $\tilde{V}^{\mu\nu} = \frac{1}{2} \varepsilon^{\mu\nu\rho\sigma} V_{\rho\sigma}$. The symbol Λ denotes the EFT energy scale. The symbols κ_{SM} , κ_{HVV} and κ_{AVV} denote the coupling constants corresponding to the interaction of the SM, BSM CP-even or BSM CP-odd spin-0 particle, represented by the X_0 field, with ZZ or WW pairs. To ensure that the Lagrangian terms are Hermitian, these couplings are assumed to be real. The mixing angle α allows for production of CP-mixed states and implies CP-violation for $\alpha \neq 0$ and $\alpha \neq \pi$, provided the corresponding coupling constants are non-vanishing. The SM couplings, g_{HVV} , are proportional to the

HAVING ALL EXTRA COUPLINGS COMPATIBLE WITH ZERO

DOES NOT MEAN CP-CONSERVATION!

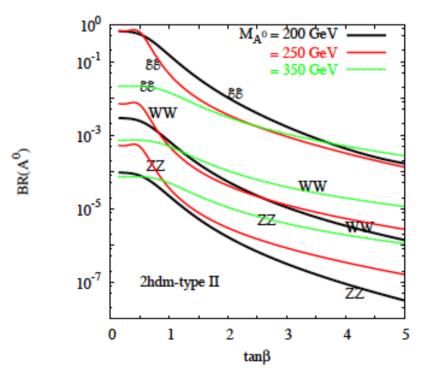
 $\tilde{\kappa}_{AVV} = \frac{1}{4} \frac{\mathrm{v}}{\Lambda} \kappa_{AVV}$

Coupling ratio	Best-fit value	95% CL Exclusion Regions $\tilde{\kappa}_{HVV} = \frac{1}{4} \frac{v}{v}$		$\tilde{\kappa}_{HVV} = \frac{1}{4} \frac{\mathrm{v}}{\Lambda} \kappa_{HVV}$
Combined	Observed	Expected	Observed	4Λ
$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$	-0.48	(-∞, -0.55] ∪[4.80, ∞)	$(-\infty, -0.73] \cup [0.63, \infty)$	
$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM}) \cdot \tan \alpha$	-0.68	$(-\infty, -2.33] \cup [2.30, \infty)$	$(-\infty, -2.18] \cup [0.83, \infty)$	4

Radiative decays of A to ZZ (WW)

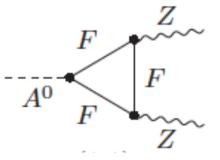
• AVV couplings can be generated at 1-loop - possible in extensions of the scalar sector such as 2HDMs.

• ATLAS and CMS results <u>have shown that if these corrections exist they are</u> <u>small</u>.



For each particular model one should check

$$A \to ZZ \ (W^+W^-)$$



ARHRIB, BENBRIK, FIELD (2006).

The C2HDM as a counterexample

• Complex 2HDM - three neutral scalars have indefinite CP.

 \bullet Interaction of each scalar with the Z bosons comes exactly from the same kinetic term as the SM one

$$g_{C2HDM}^{hVV} = \cos(\alpha_2)\cos(\beta - \alpha_1) g_{SM}^{hVV}$$

• Analysis of the correlations in momenta will not allow to draw any conclusion on the scalar's CP. They show however that any radiate contribution to CP-violating terms in hZZ(WW) is small.

• Using again the C2HDM as a benchmark, if all neutral scalars have indefinite CP it is likely that we get the first hints in the study of the process

$$pp \rightarrow h \rightarrow \tau^+ \tau^-$$

And later (in luminosity) possibly also using

$$pp \rightarrow h(\rightarrow b\overline{b})t\overline{t}$$
⁶

The Complex 2HDM as a benchmark model for CP-violation studies

The (C)2HDM

$$V(\Phi_{1}, \Phi_{2}) = m_{1}^{2} \Phi_{1}^{+} \Phi_{1} + m_{2}^{2} \Phi_{2}^{+} \Phi_{2} - \left(m_{12}^{2} \Phi_{1}^{+} \Phi_{2} + \text{h.c.}\right) + \frac{\lambda_{1}}{2} \left(\Phi_{1}^{+} \Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{+} \Phi_{2}\right)^{2} + \lambda_{3} \left(\Phi_{1}^{+} \Phi_{1}\right) \left(\Phi_{2}^{+} \Phi_{2}\right) + \lambda_{4} \left(\Phi_{1}^{+} \Phi_{2}\right) \left(\Phi_{2}^{+} \Phi_{1}\right) + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{+} \Phi_{2}\right)^{2} + \text{h.c.}\right]$$

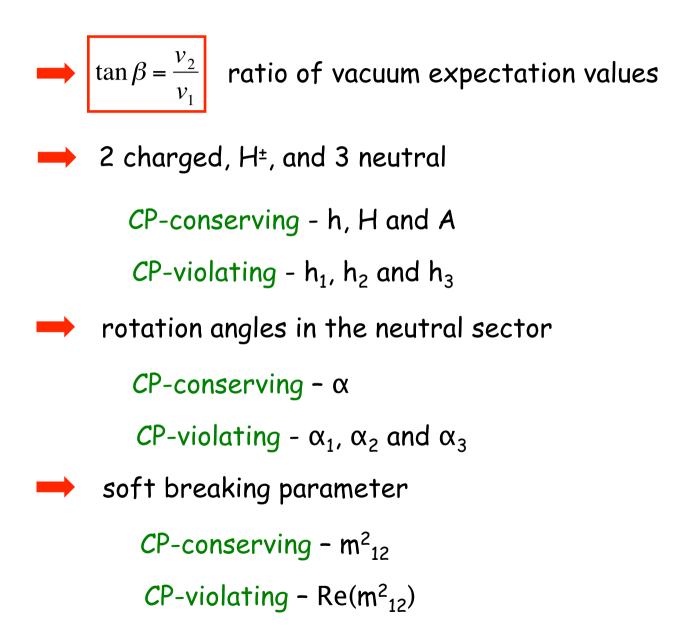
we choose a vacuum configuration

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}; \quad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$$

- m_{12}^2 and λ_5 real potential is CP-conserving (2HDM)
- m_{12}^2 and λ_5 complex potential is explicitly CP-violating (C2HDM)

Softly broken Z₂ symmetric

Parameters



Lightest Higgs couplings to gauge bosons

$$\alpha_1 = \alpha + \pi / 2$$

$$g_{2HDM}^{hVV} = \sin(\beta - \alpha) g_{SM}^{hVV}$$
 $V = W, Z$

$$g_{C2HDM}^{hVV} = (c_{\beta}R_{11} + s_{\beta}R_{12}) g_{SM}^{hVV} = \cos(\alpha_{2})\cos(\beta - \alpha_{1}) g_{SM}^{hVV} = \cos(\alpha_{2})g_{2HDM}^{hVV}$$

 $|s_2| = 0 \Rightarrow h_1$ is a pure scalar, $|s_2| = 1 \Rightarrow h_1$ is a pure pseudoscalar Is the same

The CP-violating phase is very constrained by the measurement of the Higgs couplings to vector bosons

$$\mu_{VV} \ge 0.79 \Longrightarrow \cos(\alpha_2) \ge 0.89 \Longrightarrow \alpha_2 \le 27^{\circ}$$

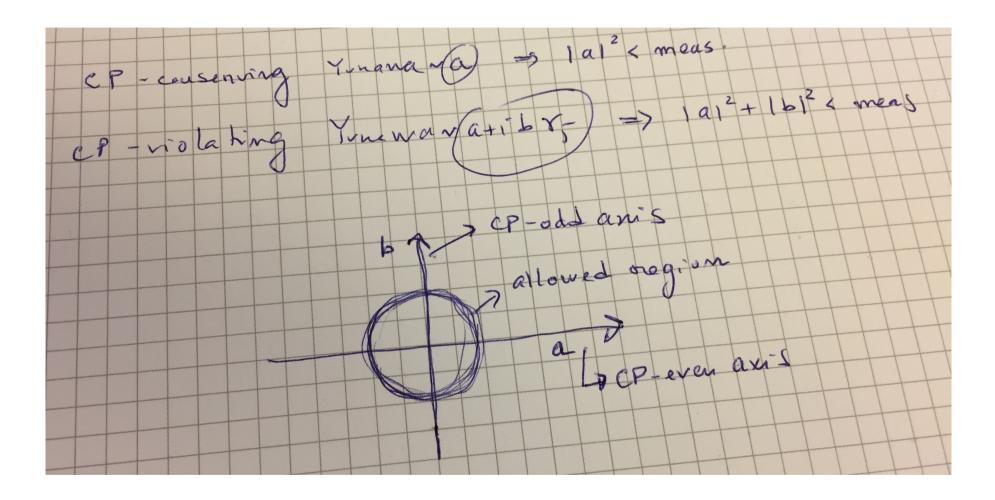
Lightest Higgs Yukawa couplings

• No FCNC at tree-level

Type I
$$\kappa_{U}^{I} = \kappa_{D}^{I} = \kappa_{L}^{I} = \frac{\cos \alpha}{\sin \beta}$$

Type II $\kappa_{U}^{H} = \frac{\cos \alpha}{\sin \beta}$ $\kappa_{D}^{H} = \kappa_{L}^{H} = -\frac{\sin \alpha}{\cos \beta}$
Type F/Y $\kappa_{U}^{F} = \kappa_{L}^{F} = \frac{\cos \alpha}{\sin \beta}$ $\kappa_{D}^{F} = -\frac{\sin \alpha}{\cos \beta}$
Type LS/X $\kappa_{U}^{LS} = \kappa_{D}^{LS} = \frac{\cos \alpha}{\sin \beta}$ $\kappa_{L}^{LS} = -\frac{\sin \alpha}{\cos \beta}$ $c_{i} = \cos(\alpha_{i}); \ s_{i} = \sin(\alpha_{i})$
 $Y_{C2HDM} \equiv c_{2}Y_{2HDM} \pm i\gamma_{5}S_{2} \begin{cases} t_{\beta} \\ 1/t_{\beta} \end{cases}$
when $s_{2} \rightarrow 0$

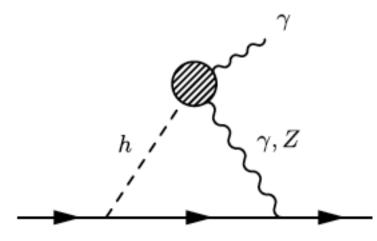
Allowed parameter space is now a circle in the plane below



$$Y_{C2HDM}^{\text{Type II}} \equiv c_2 Y_{2HDM}^{\text{Type II}} + i\gamma_5 s_2 t_{\beta}$$

Constraints

- Vacuum is stable and potential is bounded from below
- Perturbative unitarity
- Electroweak precision constraints (STU)
- B physics constraints
- Higgs searches bounds (HiggsBounds)
- Higgs bosons signal stregths
- ➡ Electron EDM

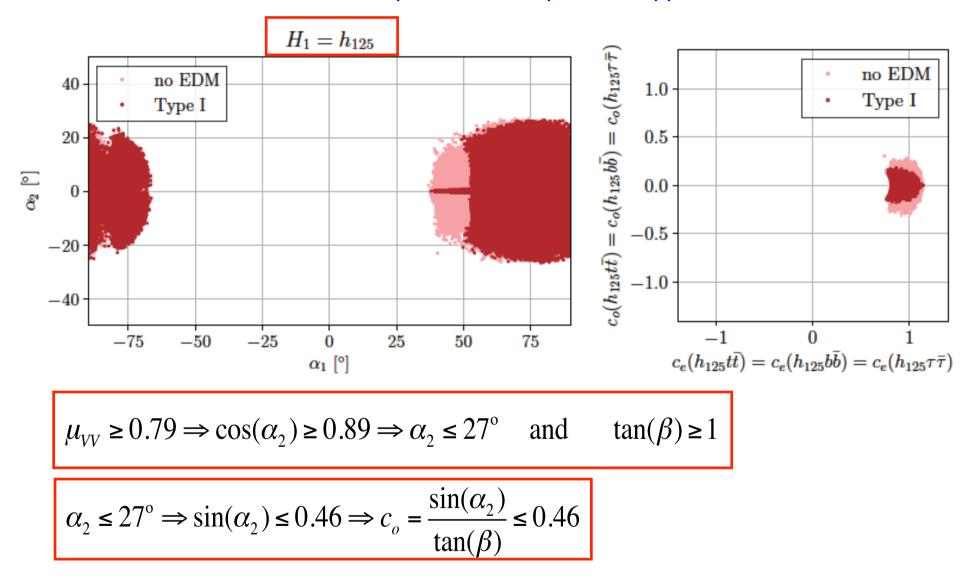


- Electric Dipole Moments are a probe of Yukawa CP-violating couplings
- Good limits on electron EDMs

$$d_{\rm e}=8.7\times10^{-29}\,{\rm e\,cm}$$

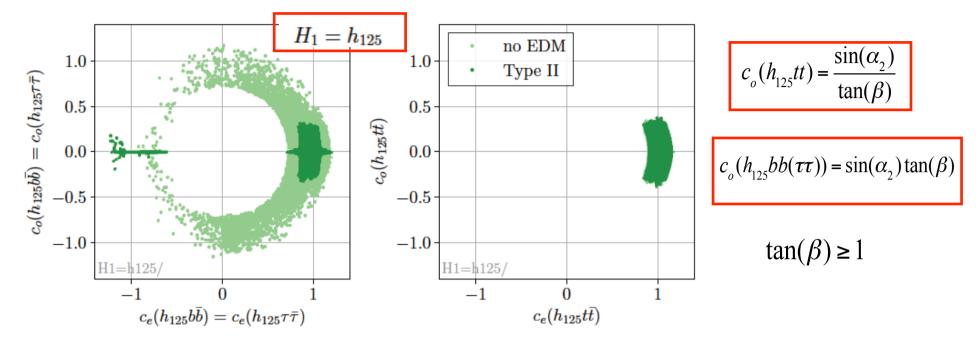
ACME, 1310.7534.

The allowed parameter space in type I



All Yukawa couplings are the same - the bounds apply equally to all of them.

The allowed parameter space in type II C2HDM



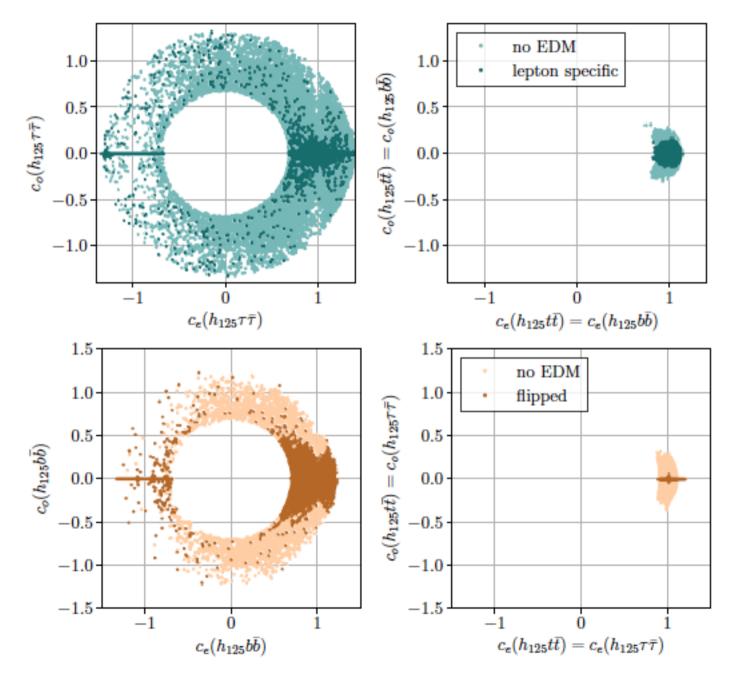
Bounds are stronger for the up-quarks couplings. They come from μ_{VV} and the bound on tanß. In type I all couplings are very constrained.

$$a_D = a_L \approx 0 \implies b_D = b_L \approx 1$$

and the remaining h_1 couplings to up-type quarks and gauge bosons are

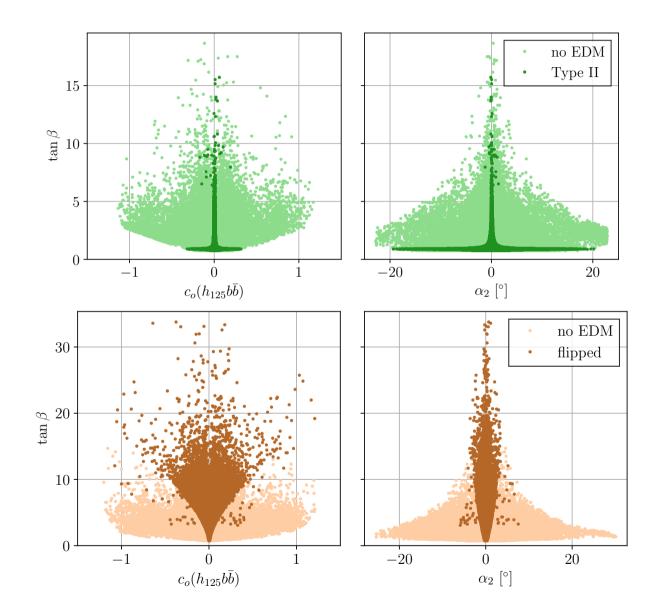
$$\begin{cases} a_U^2 = (1 - s_2^4) = (1 - 1/t_\beta^4) \\ b_U^2 = s_2^4 = 1/t_\beta^4 \end{cases} \qquad \left(\frac{g_{C2HDM}^{hVV}}{g_{SM}^{hVV}}\right)^2 = C^2 = \frac{t_\beta^2 - 1}{t_\beta^2 + 1} = \frac{1 - s_2^2}{1 + s_2^2} \end{cases}$$

Flipped and Lepton Specific



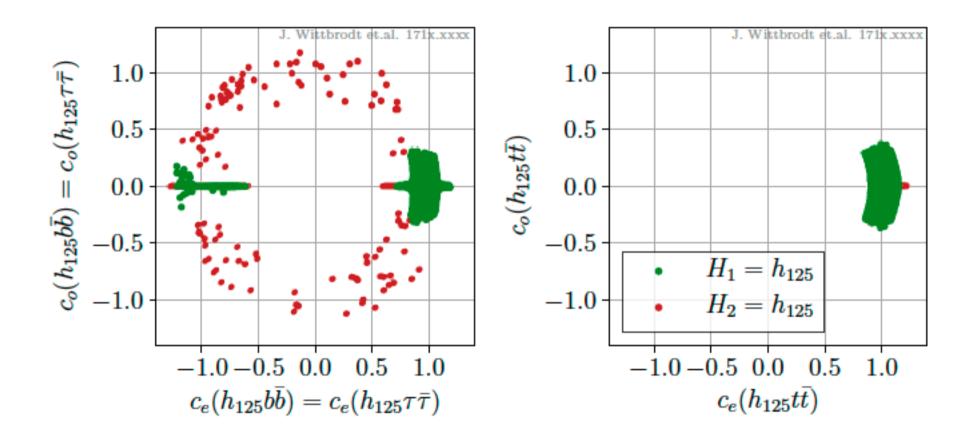
Although EDMs constraints completely kill large pseudoscalar components in Type II but not in Flipped and Lepton Specific.

Type II and Flipped



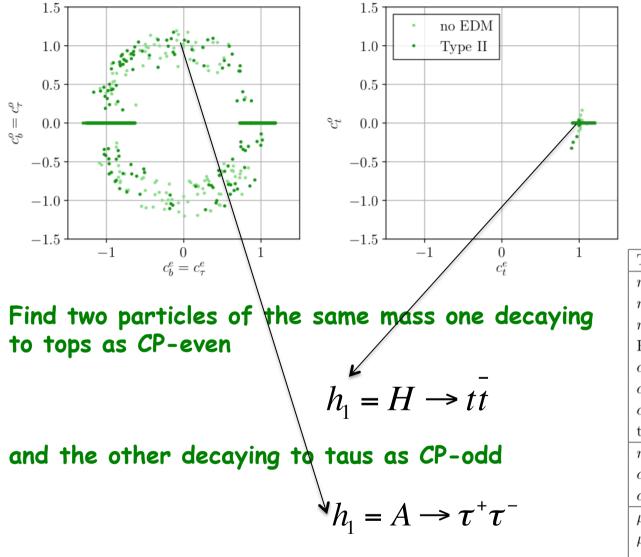
EDMs act differently in the different Yukawa versions of the model.

Other scenarios in Type II



A Type II model and two scenarios: H_1 or H_2 is the SM-like Higgs.

And this brings a very interesting CP-violation scenario



Probing one Yukawa coupling is not enough!

$$Y_{C2HDM} \equiv a_F + i\gamma_5 b_F$$
$$b_U \approx 0 \quad \text{and} \quad a_D \approx 0$$

v

Type II	BP2m	BP2c	BP2w
m_{H_1}	94.187	83.37	84.883
m_{H_2}	125.09	125.09	125.09
$m_{H^{\pm}}$	586.27	591.56	612.87
${ m Re}(m_{12}^2)$	24017	7658	46784
α_1	-0.1468	-0.14658	-0.089676
α_2	-0.75242	-0.35712	-1.0694
α_3	-0.2022	-0.10965	-0.21042
aneta	7.1503	6.5517	6.88
m_{H_3}	592.81	604.05	649.7
$c_b^e = c_\tau^e$	0.0543	0.7113	-0.6594
$c^o_b = c^o_\tau$	1.0483	0.6717	0.6907
μ_V/μ_F	0.899	0.959	0.837
μ_{VV}	0.976	1.056	1.122
$\mu_{\gamma\gamma}$	0.852	0.935	0.959
$\mu_{ au au}$	1.108	1.013	1.084
μ_{bb}	1.101	1.012	1.069

New probes of CP-violation

Combinations of three decays

Already
observed
$$h_1 \rightarrow ZZ \iff CP(h_1) = 1$$

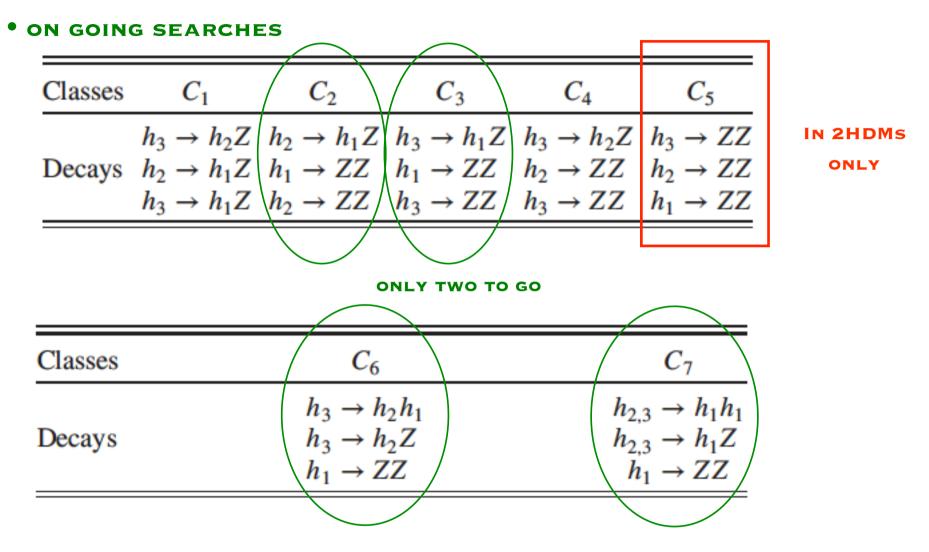
$$h_3 \rightarrow h_2 h_1 \implies \operatorname{CP}(h_3) = \operatorname{CP}(h_2) \operatorname{CP}(h_1) = \operatorname{CP}(h_2)$$

Decay	CP eigenstates	Model
$h_3 \rightarrow h_2 Z$ $CP(h_3) = -CP(h_2)$	None	C2HDM, other CPV extensions
$h_{2(3)} \to h_1 Z CP(h_{2(3)}) = -1$	2 CP-odd; None	C2HDM, NMSSM,3HDM
$h_2 \rightarrow ZZ CP(h_2) = 1$	3 CP-even; None	C2HDM, cxSM, NMSSM,3HDM

C2HDM - D. FONTES, J.C. ROMÃO, RS, J.P. SILVA; PRD92 (2015) 5, 055014.

NMSSM - S.F. KING, M. MÜHLLEITNER, R. NEVZOROV, K. WALZ; NPB901 (2015) 526-555.

Classes of CP-violating processes



CLASSES INVOLVING SCALAR TO TWO SCALARS DECAYS

	P5	<i>P</i> 6
$\sigma(h_1)$ 13 TeV	55.144 [pb]	53.455 [pb]
$\sigma(h_1) \mathrm{BR}(h_1 \to W^* W^*)$	10.657 [pb]	11.069 [pb]
$\sigma(h_1) BR(h_1 \to Z^*Z^*)$	1.093 [pb]	1.136 [pb]
$\sigma(h_1) BR(h_1 \to bb)$	33.118 [pb]	32.152 [pb]
$\sigma(h_1) BR(h_1 \rightarrow \tau \tau)$	3.825 [pb]	2.845 [pb]
$\sigma(h_1) BR(h_1 \rightarrow \gamma \gamma)$	119.794 [fb]	122.579 [fb]
$\sigma_2 \equiv \sigma(h_2)$ 13 TeV	1.620 [pb]	4.920 [pb]
$\overline{\sigma_2} \times \mathrm{BR}(h_2 \to WW)$	1.032 [pb]	0.542 [pb]
$\overline{\sigma_2} \times \mathrm{BR}(h_2 \to ZZ)^{\prime}$	0.427 [pb]	0.232 [pb]
$\overline{\sigma_2} \times \mathrm{BR}(h_2 \to bb)$	0.012 [pb]	0.097 [pb]
$\overline{\sigma_2} \times \mathrm{BR}(h_2 \to \tau \tau)$	0.001 [pb]	0.109 [pb]
$\sigma_2 \times \mathrm{BR}(h_2 \to \gamma \gamma)$	0.123 [fb]	0.344 [fb]
$\sigma_2 \times \text{BR}(h_2 \to h_1 Z)$	0.140 [pb]	0.075 [pb]
$\sigma_2 \times \text{BR}(h_2 \to h_1 Z \to b b Z)$	0.084 [pb]	0.045 [pb]
$\sigma_2 \times \mathrm{BR}(h_2 \to h_1 Z \to \tau \tau Z)$	9.683 [fb]	3.982 [fb]
$\sigma_2 \times \mathrm{BR}(h_2 \to h_1 h_1)$	0.000 [fb]	3772.577 [fb]
$\sigma_2 \times \mathrm{BR}(h_2 \to h_1 h_1 \to b b b b)$	0.000 [fb]	1364.787 [fb]
$\sigma_2 \times \text{BR}(h_2 \to h_1 h_1 \to b b \tau \tau)$	0.000 [fb]	241.505 [fb]
$\sigma_2 \times \mathrm{BR}(h_2 \to h_1 h_1 \to \tau \tau \tau \tau)$	0.000 [fb]	10.684 [fb]
$\sigma_3 \equiv \sigma(h_3)$ 13 TeV	9.442 [pb]	10.525 [pb]
$\sigma_3 \times \mathrm{BR}(h_3 \to WW)$	0.638 [pb]	0.945 [pb]
$\sigma_3 \times \mathrm{BR}(h_3 \to ZZ)$	0.293 [pb]	0.406 [pb]
$\sigma_3 \times \mathrm{BR}(h_3 \to bb)$	0.004 [pb]	0.422 [pb]
$\sigma_3 \times \mathrm{BR}(h_3 \to \tau \tau)$	0.432 [fb]	407.337 [fb]
$\sigma_3 \times \mathrm{BR}(h_3 \to \gamma \gamma)$	0.140 [fb]	2.410 [fb]
$\sigma_3 \times \mathrm{BR}(h_3 \to h_1 Z)$	0.383 [pb]	0.691 [pb]
$\sigma_3 \times \mathrm{BR}(h_3 \to h_1 Z \to b b Z)$	0.230 [pb]	0.416 [pb]
$\sigma_3 \times \mathrm{BR}(h_3 \to h_1 Z \to \tau \tau Z)$	26.554 [fb]	36.779 [fb]
$\sigma_3 \times \mathrm{BR}(h_3 \to h_2 Z)$	2.495 [pb]	0.000 [pb]
$\sigma_3 \times \mathrm{BR}(h_3 \to h_2 Z \to b b Z)$	0.019 [pb]	0.000 [pb]
$\sigma_3 \times \mathrm{BR}(h_3 \to h_2 Z \to \tau \tau Z)$	2.188 [fb]	0.000 [fb]
$\sigma_3 \times \mathrm{BR}(h_3 \to h_1 h_1)$	433.402 [fb]	6893.255 [fb]
$\sigma_3 \times \text{BR}(h_3 \to h_1 h_1 \to b b b b)$	156.329 [fb]	2493.740 [fb]
$\sigma_3 \times \text{BR}(h_3 \to h_1 h_1 \to b b \tau \tau)$	36.111 [fb]	441.277 [fb]
$\sigma_3 \times \text{BR}(h_3 \to h_1 h_1 \to \tau \tau \tau \tau)$	2.085 [fb]	19.521 [fb]
$\sigma_3 \times \mathrm{BR}(h_3 \to h_2 h_1)$	0.000 [fb]	0.000 [fb]
$\sigma_3 \times \text{BR}(h_3 \to h_2 h_1 \to b b b b)$	0.000 [fb]	0.000 [fb]
$\sigma_3 \times \text{BR}(h_3 \to h_2 h_1 \to b b \tau \tau)$	0.000 [fb]	0.000 [fb]
$\sigma_3 \times \mathrm{BR}(h_3 \to h_2 h_1 \to \tau \tau \tau \tau)$	0.000 [fb]	0.000 [fb]

TABLE VIII. Predictions for $\sigma \times BR$ at $\sqrt{s} = 13$ TeV for the benchmark points P5 (Type I) and P6 (lepton specific).

Class C7

$$h_1 \rightarrow ZZ \quad \Leftarrow \quad \operatorname{CP}(h_1) = 1$$

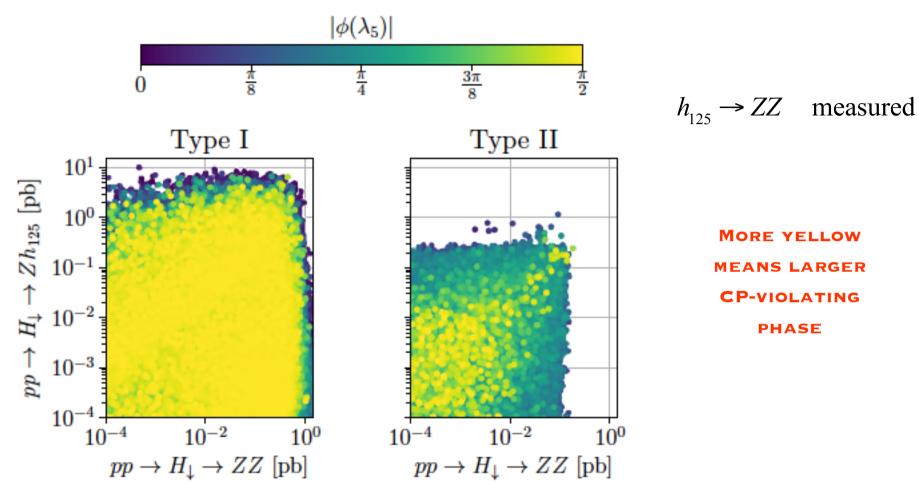
$$h_3 \rightarrow h_1 Z \implies \operatorname{CP}(h_3) = -\operatorname{CP}(h_1) = -1$$

$$h_3 \rightarrow h_1 h_1 \quad \Leftarrow \quad \operatorname{CP}(h_3) = 1$$

23

Measures of CP-violation

The CP-violating angle



There is no correlation between the high rates of CP-violating decays and the CP-violating phase.

Other variables

• Variable involving Higgs couplings to gauge bosons

$$\xi_V = 27 \prod_{i=1}^3 c(H_i V V)^2$$
 with $c(H_i V V) = R_{i1}c_\beta + R_{i2}s_\beta$

• Variables involving Higgs Yukawa couplings (for a Type II model)

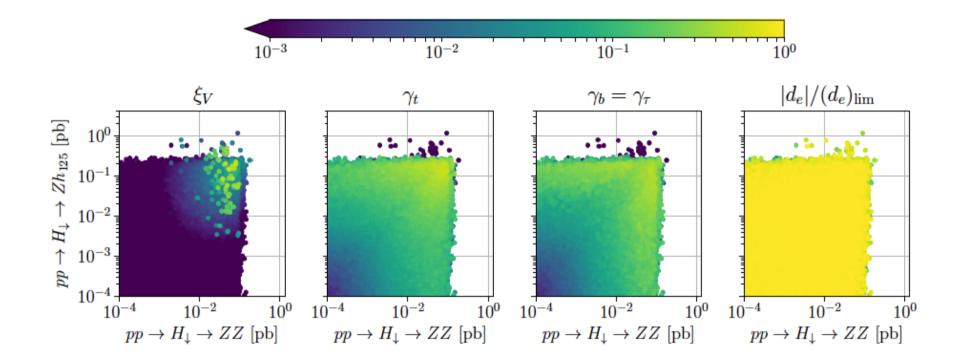
$$\gamma_t = 1024 \prod_i (R_{i2}R_{i3})^2,$$

$$\gamma_b = 1024 \prod_i (R_{i1}R_{i3})^2.$$

$$c(H_i t\bar{t}) = \frac{1}{s_\beta} \left(\frac{R_{i2} - i\gamma^5 \frac{R_{i3}}{c_\beta}}{c_\beta} \right)^2.$$

which are normalized to be between 0 and 1. Variables for the sum can also be defined but they are useless.

Results for Type II (where some correlation seems to exist)



But in most cases there is no correlation.

CP-violating angles vs. direct measurements

Direct probing at the LHC (TTh)

$$pp \rightarrow h \rightarrow \tau^+ \tau^-$$

BERGE, BERNREUTHER, ZIETHE 2008 BERGE, BERNREUTHER, NIEPELT, SPIESBERGER, 2011 BERGE, BERNREUTHER, KIRCHNER 2014

• A measurement of the angle

$$\tan \phi_{\tau} = \frac{b_L}{a_L} \qquad \text{can be performed} \\ \text{with the accuracies} \qquad \left\{ \begin{array}{l} \Delta \phi_{\tau} = 40^{\circ} & 150 \text{ fb}^{-1} \\ \Delta \phi_{\tau} = 25^{\circ} & 500 \text{ fb}^{-1} \end{array} \right.$$

ſ

Numbers from:

Berge, Bernreuther, Kirchner,

EPJC74, (2014) 11, 3164.

$$\tan \phi_{\tau} = -\frac{s_{\beta}}{c_1} \tan \alpha_2 \implies \tan \alpha_2 = -\frac{c_1}{s_{\beta}} \tan \phi_{\tau}$$

• It is not a measurement of the CP-violating angle α_2 . In fact if $c_1=0$ the particle seems to be a pure pseudoscalar but...

Direct probing at the LHC

• For the C2HDM we need two independent measurements

$$\tan \phi_i = \frac{b_i}{a_i}; \quad i = U, D, L$$

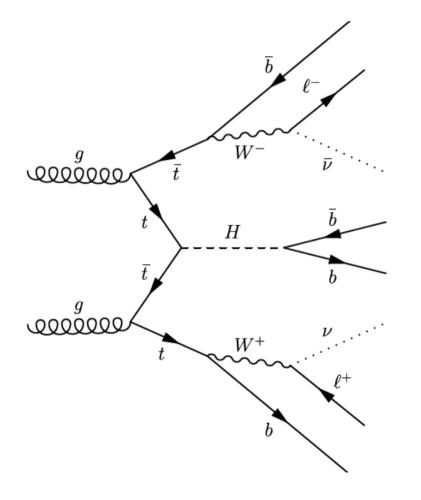
• Just one measurement for type I (U = D = L), two for the other three types. At the moment there are studies for tth and $\tau\tau$ h.

- If $\Phi_{t} \neq \Phi_{\tau}$ type I and F (Y) are excluded.
- To probe model F (Y) we need the bbh vertex.

Direct probing at the LHC (tth)

$$pp \rightarrow h(\rightarrow b\overline{b})t\overline{t}$$

GUNION, HE 1996 BOUDJEMA, GODBOLE, GUADAGNOLI, MOHAN 2015 AMOR DOS SANTOS EAL 2015



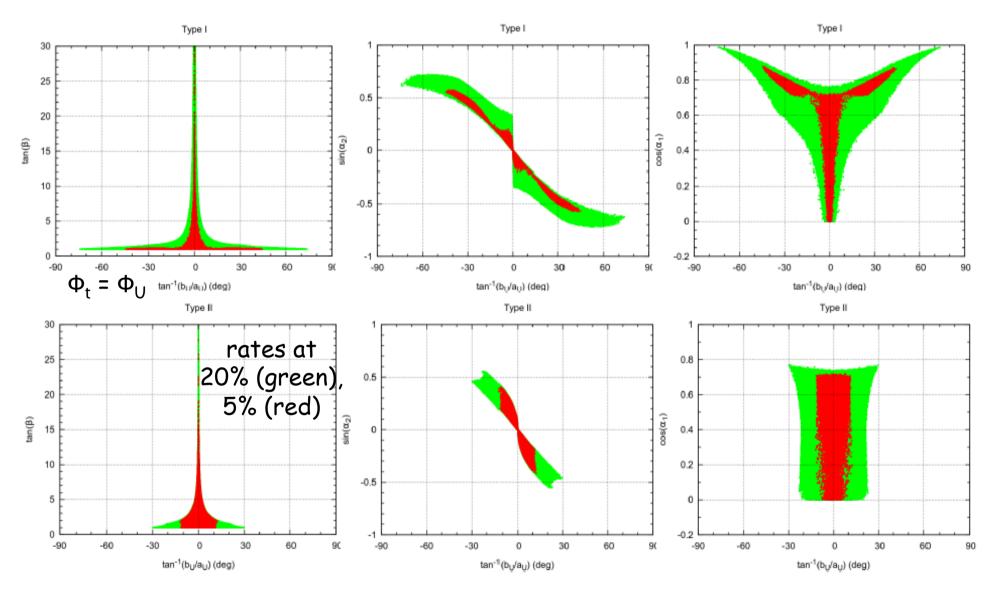
$$\mathcal{L}_{Hfar{f}} = -rac{y_f}{\sqrt{2}}ar{\psi}_f(a_f+ib_f\gamma_5)\psi_fh$$

Signal: tt fully leptonic and H -> bb

Background: most relevant is the irreducible tt background

Ask Ricardo G. et al

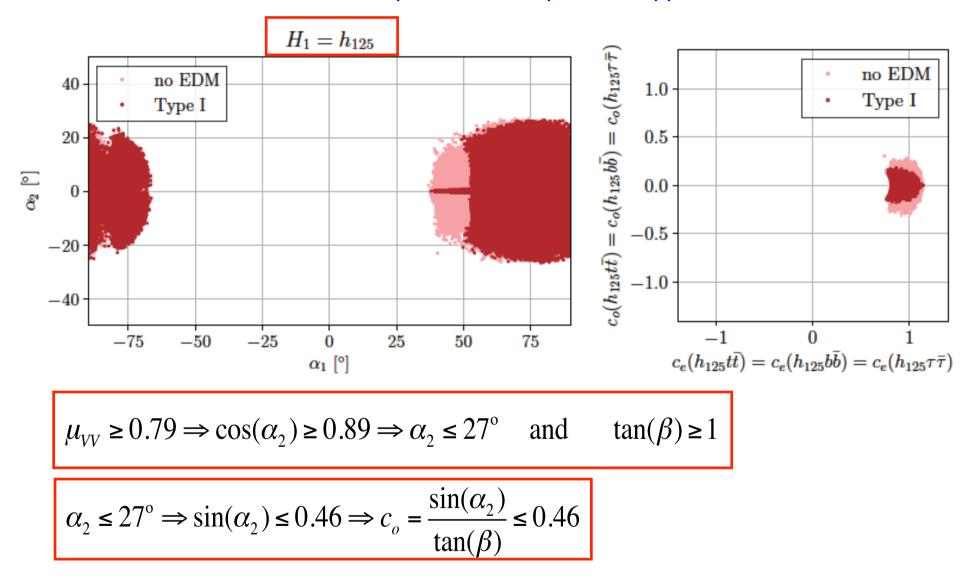
Limits on Φ_t based on the rates only



Competitive for Type I but not for Type II

The end and extra slides

The allowed parameter space in type I

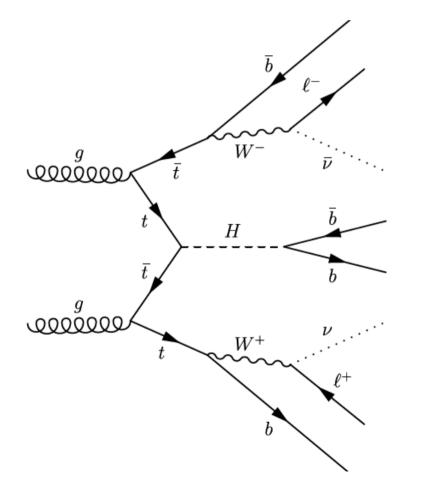


All Yukawa couplings are the same - the bounds apply equally to all of them.

Direct probing at the LHC (tth)

$$pp \rightarrow h(\rightarrow b\overline{b})t\overline{t}$$

GUNION, HE 1996 BOUDJEMA, GODBOLE, GUADAGNOLI, MOHAN 2015 AMOR DOS SANTOS EAL 2015

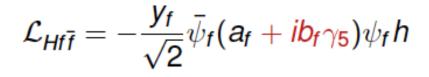


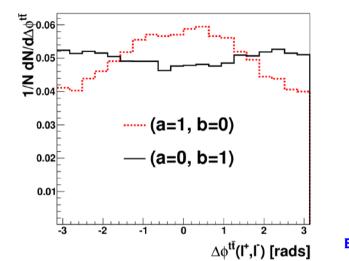
$$\mathcal{L}_{Hfar{f}} = -rac{y_f}{\sqrt{2}}ar{\psi}_f(a_f+ib_f\gamma_5)\psi_fh$$

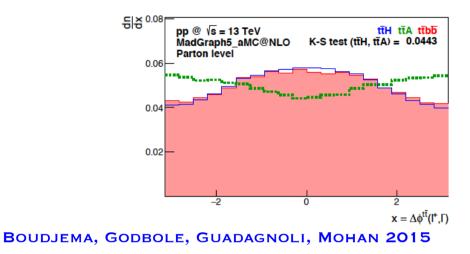
Signal: tt fully leptonic and H -> bb

Background: most relevant is the irreducible tt background

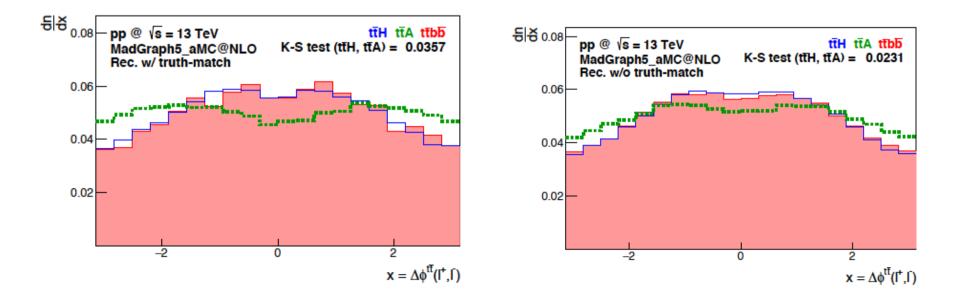
Review of tth

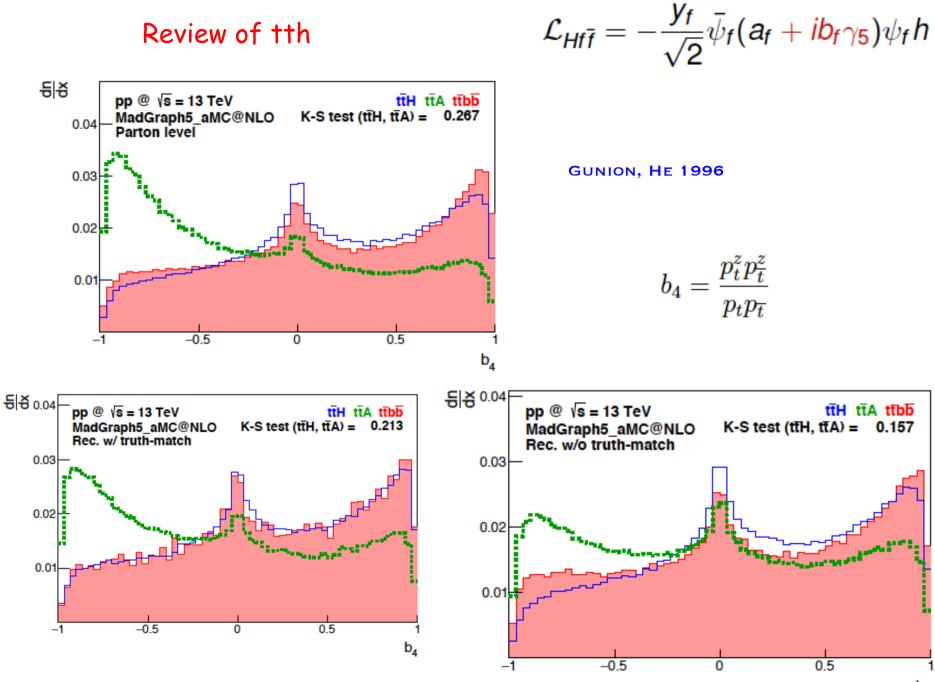






Azimuthal difference between I⁺ in the t rest frame and I⁻ in the tbar rest frame

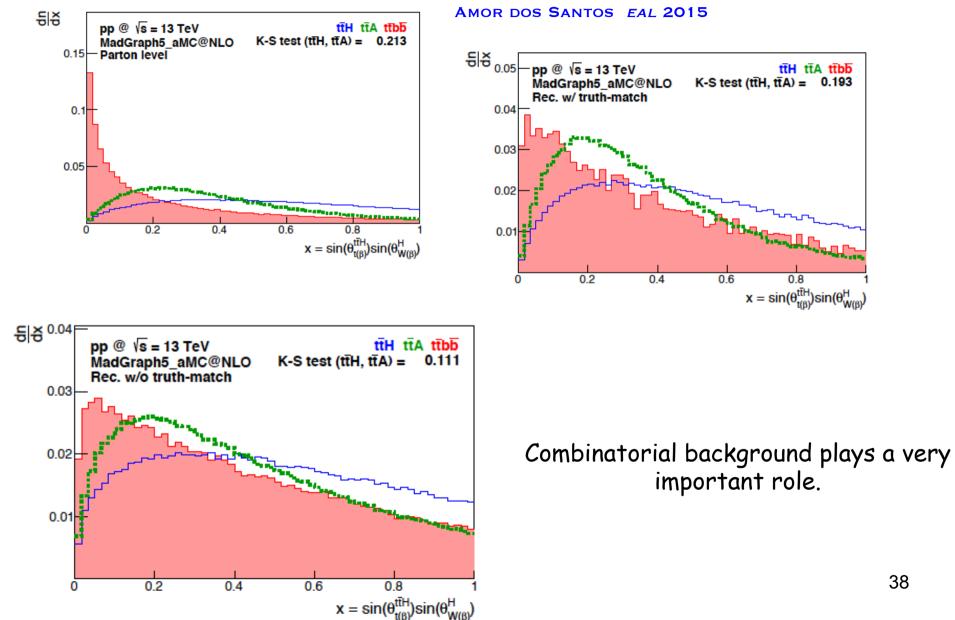




b4

Review of tth

 $\mathcal{L}_{Hf\bar{f}} = -\frac{y_f}{\sqrt{2}} \bar{\psi}_f (a_f + ib_f \gamma_5) \psi_f h$



The zero scalar scenarios

In Type II, if

$$a_D = a_L \approx 0 \implies b_D = b_L \approx 1$$

and the remaining h_1 couplings to up-type quarks and gauge bosons are

$$\begin{cases} a_U^2 = (1 - s_2^4) = (1 - 1/t_\beta^4) \\ b_U^2 = s_2^4 = 1/t_\beta^4 \end{cases} \qquad \left(\frac{g_{C2HDM}^{hVV}}{g_{SM}^{hVV}}\right)^2 = C^2 = \frac{t_\beta^2 - 1}{t_\beta^2 + 1} = \frac{1 - s_2^2}{1 + s_2^2} \end{cases}$$

This means that the h_1 couplings to up-type quarks and to gauge bosons have to be very close to the SM Higgs ones.

• There is only one way to make the pseudoscalar component to vanish

$$R_{13} = 0 \implies s_2 = 0$$

and they all vanish (for all types and all fermions).

• There are two ways of making the scalar component to vanish

$$\begin{split} R_{11} = 0 &\Rightarrow c_1 c_2 = 0 \\ R_{11} = 0 &\Rightarrow c_1 c_2 = 0 \\ R_{12} = 0 &\Rightarrow s_1 c_2 = 0 \\ \hline \textbf{excluded} \\ \hline \textbf{c}_1 = 0 \quad \textbf{allowed} \\ \hline \textbf{c}_1 = 0 \quad \textbf{allowed} \\ \hline \textbf{c}_1 = 0 \quad \textbf{allowed} \\ \hline \textbf{c}_1 = 0 \quad \textbf{c}_2 = 0 \\ \hline \textbf{c}_2 = 0 \\ \hline \textbf{c}_1 = 0 \quad \textbf{c}_2 = 0 \\ \hline \textbf{c}_2 = 0 \\ \hline \textbf{c}_1 = 0 \quad \textbf{c}_2 = 0 \\ \hline \textbf{c}_1 = 0 \quad \textbf{c}_2 = 0 \\ \hline \textbf{c}_$$

The zero scalar scenarios

• So, taking $c_1 = 0 \implies R_{11} = 0$

and

$$a_U^2 = \frac{c_2^2}{s_\beta^2}; \quad b_U^2 = \frac{s_2^2}{t_\beta^2}; \quad C^2 = s_\beta^2 c_2^2$$

Type I
$$a_U = a_D = a_L = \frac{c_2}{s_\beta}$$
 $b_U = -b_D = -b_L = -\frac{s_2}{t_\beta}$

Type II $a_D = a_L = 0$ $b_D = b_L = -s_2 t_\beta$

Type F $a_D = 0$ $b_D = -s_2 t_\beta$

Even if the CP-violating parameter is small, large $tan\beta$ can lead to large values of b.

Type LS $a_L = 0$ $b_L = -s_2 t_\beta$