The dark Universe studied from deep underground: Exploring the low-mass frontier

University of Coimbra 20 June 2018

Federica Petricca

MPP Munich

for the CRESST collaboration

The dark matter problem

The dark matter problem

...but raises some fundamental questions:

One model fits all the observations...

Source: © European Space Agency / Planck

20 June 2018

The dark Universe studied from deep underground: Exploring the low-mass frontier Federica Petricca, MPP Munich

What is dark matter?

What is dark energy?

After 80 years...

• Non-baryonic

Height of acoustic peaks in the CMB Power spectrum of density fluctuations Primordial nucleosynthesis

- Cold (non-relativistic) Structure formation
- Interacts via gravity and (maybe) some sub-weak scale force
- STILL HERE!

Stable (or extremely long-lived)

20 June 2018

The dark Universe studied from deep underground: Exploring the low-mass frontier

The nature of dark matter

Once there was only the WIMP miracle...

Now WIMP only one out of a range of theoretical motivated dark matter candidates with wide range of mass and cross section

The hunt for dark matter

Direct dark matter detection

Basic idea

Dark matter is made of particles which interact with Standard Model particles

Most common scenario

Dark matter particles scatter off nuclei:

- elastically
- coherently: ~ A²
- (spin-independent)

Dark matter in the Milky Way

DISTRIBUTION OF DARK MATTER IN NGC 3198

Standard assumptions:

- Maxwellian velocity distribution
- asymptotic velocity of 220 km/s
- galactic escape velocity of 544 km/s
- local dark matter density of 0.3 GeV/cm³

Dark matter recoil spectrum: CaWO₄ target, ideal detector

20 June 2018

Dark matter recoil spectrum: CaWO₄ target, ideal detector

Dark matter recoil spectrum: CaWO₄ target, ideal detector

Dark matter recoil spectrum: CaWO₄ target, ideal detector

Minimising background

- Underground site
- Shielding/vetoing
- Radon mitigation
- Purity of materials
- Material handling
- Event-by-event discrimination

Low radioactivity materials for detector hardware

Water/plastic+scintillator

Minimising background

For a discovery: understand residual background

Direct dark matter searches

An incomplete compilation

The CRESST collaboration

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

LNGS

20 June 2018

CRESST @ LNGS

The experimental setup

20 June 2018

The CRESST experiment

Cryogenic Rare Event Search with Superconducting Thermometers

Direct detection of dark matter particles via their scattering off target nuclei

Scintillating CaWO₄ crystals as target

Target crystals operated as cryogenic calorimeters (~15mK)

Separate **cryogenic light detector** to detect the scintillation light signal

Cryogenic calorimeter

Transition edge sensor

Cryogenic detector

Phonon signal (≈90 %)
(almost) independent of particle type
precise measurement of the deposited energy

Scintillation light (few %) particle-type dependent → LIGHT QUENCHING

Detector module

Simultaneous signals from the transition edge sensors (TESs)

20 June 2018

Event discrimination

Light Yield= Light signal Phonon signal Characteristic of the event type

Excellent discrimination between potential signal events (**nuclear recoils**) and dominant radioactive background (**electron recoils**)

Event discrimination

Light Yield= Characteristic of the event type

ROI : region of interest for dark matter search

Quenching factor measurement

Precise determination of QFs for O, Ca & W @mK temperatures Values (in ROI)

- O: (11.2 ± 0.5)%
- Ca: (5.94 ± 0.49)%
- W: (1.72 ± 0.21)%

20 June 2018

The dark Universe studied from deep underground: Exploring the low-mass frontier

Federica Petricca, MPP Munich

E_r (keV)

EPJ C (2014) 74:2957

CRESST-II results

Crystal: Lise - background level ≈8.5 counts/(keV kg day) Threshold: 307eV Resolution: σ=62eV at zero energy

World-leading below 1.7GeV/c² Exploring new parameter space down to 0.5GeV/c²

Hunting light dark matter requires a low threshold!

Low threshold detectors

Number of Counts Above Threshold (1/(pb kg d))

20 June 2018

CRESST-III low-threshold detectors

Detector layout optimized for low-mass dark matter **Radical reduction of dimension**

- Cuboid crystals of (20×20×10)mm³ (≈24g)
- Self grown crystals **≈3 counts/(keV kg day)**
- Threshold design goal 100 eV threshold
- Fully scintillating housing Veto surface
- Instrumented sticks

20 June 2018

The dark Universe studied from deep underground: Exploring the low-mass frontier Federica Petricca, MPP Munich

©T. Dettlaff/MPP

CRESST-III Phase 1

Data taking from July 2016 to February 2018

20 June 2018

The dark Universe studied from deep underground: Exploring the low-mass frontier Federica Petricca, MPP Munich **©R.** Strauss/MPP

Optimum filter Spectral Density Amplitude <mark>(신</mark>² 10^{-3} Pulse-height evaluation with optimum filter 104 10-5 Template pulse¹⁰ The Gatti-Manfredi filter is an optimum 10⁻⁸ filter which maximizes the ratio 10° Baseline between the amplitude of the treated 10-11 10^{-12} pulse and the noise RMS 10⁻¹³ 10-14 10^{2} 10 103 10⁴ Frequency [Hz]

Optimum thresholds

New frontier in direct dark matter detection

5 detectors reach/exceed the CRESST-III design goal

Detector A

Data taking period for this analysis: Non-blind data (dynamically growing): Target crystal mass: Gross exposure (before cuts): Analysis threshold: 10/2016 – 05/2017 20% randomly selected 24g 2.39 kg days 100 eV

Det A - 100 eV pulses

Raw signals: no filtering, fitting etc.

100eV pulses are no challenge for amplitude determination

20 June 2018

Selection criteria

Objective

Keep only events where a correct determination of the amplitude (\rightarrow energy) is guaranteed **Unbiased (blind) analysis**

- 1. Design cuts on <u>non-blind</u> training set ($\leq 20\%$, excluded from DM data set)
- 2. Apply without change to <u>blind</u> DM data set

Rate: noise conditions
Stability: Detector(s) in operating point
Data quality: Non-standard pulse shapes (e.g. i-Stick events and pileup)
Coincidences: with μ-veto and i-Sticks only (to be expanded to "with other detector modules")

Efficiency of selection criteria

Rate, Stability:

92.5% survival = 2.21 kg days net exposure

Efficiency of selection criteria

20 June 2018

Neutron calibration

20 June 2018

Dark matter data

20 June 2018

Dark matter data – Energy spectrum

Dark matter data – Energy spectrum

Cosmogenic activation $^{179}Ta + e^{-} \rightarrow ^{179}Hf + v_{e}$ (1.8y)

20 June 2018

Dark matter data – Acceptance region

Acceptance region fixed before unblinding

20 June 2018

Dark matter data – Accepted events

20 June 2018

Dark matter data – Accepted events

20 June 2018

Dark matter data – Accepted events

20 June 2018

From accepted events to dark matter limits

Non-flat background at 100eV

20 June 2018

Non-flat background at 100eV

20 June 2018

Conclusions

This is just the beginning

First CRESST-III run 07/2016 - 02/2018: Analysis ongoing

- **3** times lower optimum threshold for detector A
- **3** other detectors with thresholds << 100eV
- 3 times more statistics \rightarrow deeper understanding of backgrounds

Second CRESST-III run just starting

Key innovation

Upgraded detector modules with dedicated hardware changes to understand backgrounds

Additional upgrade

Active magnetic field compensation with three pair of coils for x,y & z-axes

20 June 2018

Waiting for dark matter

The cryostat is cold

First pulses measured

Commissioning phase

20 June 2018

20 June 2018

Backup slides to follow

20 June 2018

Wide range and up-to-date

61

Rate Xenon1T

From arXiv: 1805.12562

TABLE I: Best-fit expected event rates with 278.8 days livetime in the 1.3 t fiducial mass, 0.9 t reference mass, and 0.65 t core mass, for the full (cS1, cS2_b) ROI and, for illustration, in the NR signal reference region. The table lists each background (BG) component separately and in total, the observed data, and the expectation for a 200 GeV/c² WIMP prediction assuming the best-fit $\sigma_{SI} = 4.7 \times 10^{-47}$ cm².

Mass	1.3 t	1.3 t	0.9 t	$0.65~{\rm t}$
$(cS1, cS2_b)$	Full	Reference	Reference	Reference
ER	627 ± 18	$1.62{\pm}0.30$	$1.12{\pm}0.21$	$0.60 {\pm} 0.13$
neutron	$1.43{\pm}0.66$	$0.77{\pm}0.35$	$0.41{\pm}0.19$	$0.14{\pm}0.07$
$CE\nu NS$	$0.05{\pm}0.01$	$0.03{\pm}0.01$	0.02	0.01
AC	$0.47\substack{+0.27\\-0.00}$	$0.10\substack{+0.06\\-0.00}$	$0.06\substack{+0.03\\-0.00}$	$0.04\substack{+0.02\\-0.00}$
Surface	106 ± 8	$4.84{\pm}0.40$	0.02	0.01
Total BG	735 ± 20	$7.36{\pm}0.61$	$1.62{\pm}0.28$	$0.80 {\pm} 0.14$
$\mathrm{WIMP}_{\mathrm{best-fit}}$	3.56	1.70	1.16	0.83
Data	739	14	2	2

278.8 days * 1.3 t / 3.56 counts

- = 101days t/count
- \rightarrow 0.01 counts/day t