

SWG 2nd progress meeting Background environment in an equatorial low-Earth orbit &

updates on the performance

P. Cumani, M. Hernanz, V. Tatischeff

General Parameters

If not differently specified, the spectrum (in $m^{-2}s^{-1}MeV^{-1}sr^{-1}$) is calculated for:

- Altitude h = 550 km
- Inclination $i = 0^{\circ}$
- Medium solar activity

Albedo Neutrons

Only the upward component by Kole et al. (2015): 4 power-laws $x_i \cdot E^{-y_i}$

Cosmic Photons

Cosmic Photons

- E<890 keV: INTEGRAL (Türler et al. (2010))
- 890 keV< E <~ 1.2 MeV: EGRET (Mizuno et al. (2004))
- E > ~ 1.2 MeV: Fermi-LAT (Ackermann et al. (2015))

Cosmic Photons: Galactic Disk

Publicly available LAT Galactic interstellar emission model: average of the two regions ($b = \pm 1^{\circ}$, $l = \pm 2.5^{\circ}$ and $b = \pm 2^{\circ}$, $l = \pm 90^{\circ}$)

Cosmic Photons: Galactic Disk

Cosmic Photons: Galactic Disk

Albedo Photons

Albedo Photons

- E<1.85 MeV: The sum of:
 - Hard X-ray surface brightness of the Earth's atmosphere Sazonov et al. (2007)
 - Reflected cosmic X-ray background from Churazov et al. (2006)
- 1.85 MeV < E < 200 MeV: From Mizuno et al. (2004)
- E>200 MeV: From Abdo et al. (2009):

All the results are normalized to the Mizuno et al. (2004) ones

Albedo Photons

Primary Protons

Primary Protons

AMS data (Aguilar et al. (2015a)) plus solar modulation and reduction factor from the geomagnetic cutoff. Why not SPENVIS?

- Not rely on an external tool
- Consistency with primary electrons/positrons spectra (that can not be calculated using SPENVIS)

Secondary Protons

From Mizuno et al. (2004)

Primary Alphas

AMS data (Aguilar et al. (2015b)) plus modulations

15

Primary Electrons

AMS data (Aguilar et al. (2014)) plus modulations

Primary Positrons

AMS data (Aguilar et al. (2014)) plus modulations

Secondary Electrons & Positrons

From Mizuno et al. (2004)

Secondary Electrons & Positrons

From Mizuno et al. (2004)

General Background

General Background

General Background

Energy / MeV

General Background: Github

pounani / LEOBACKgrou			6	Constants -		m o Asox	
O Code 🗇 Issues 🛞 👘	Pul reports 8 EP	rojecta 🛞 🛛 🖾 Wiel 👘	i Insights 0	Settings			
lacros to compute and visuali Mispin	ze the background on a	Low Earth Orbit					đ
©7 commits	¥2 bearschen	©∉ releases	AL 0 ::	orbibutors		фмп	
mand: master *	ни		Create new file	Upload files	Field Sile	Clone or downloa	
promani Update PEADAE.ed				U	stest commit	rasasas 2 minutes i	•
Data		First commi				20 minutes a	•
E atlance		Create .gltg	pore			38 minutes a	¢.
E BackgroundPlotter_ALpy		First commi				20 minutes a	90
LATBackground.py		First commi				20 minutes a	90
LEOBackgroundGenerator.py		First commi				20 minutes a	90
E LICENSE		Create LICE	INSE			20 minutes a	90

Background on a low Earth orbit

Macros to compute and visualize the background for a satellite on a Low Earth Orbit (LEO).

It uses equations/data from:

- Albedo Neutrons: Kole et al. 2015 doi:10.1016/j.astropartphys.2014.10.002
- Cosmic Photons:
- Tarter et al. 2010 doi:10.1051/0004-6361/200913072
- Mizuno et al. 2004 http://stacks.jop.org/0004-6373/6140-2/a-1113
- Ackermann et al. 2015 doi:10.1089/0004-637X/799/1/85
- Galactic Center/Disk:
- Fermi-LAT collaboration https://fermi.gstc.nasa.gov/ssc/data/analysis/software/suc/gill.iem.v06.fts
- Albedo Photons;
- Sazonov et al. 2007 doi:10.1111/j.1305-2966.2007.11746.x
- Charazov et al. 2006 doi:10.11116.1365-2966.2008.12918.x
- Türler et al. 2010 doi:10.1051/0004-6361/200913072
- Mizuno et al. 2004 http://stacks.jop.org/0004-6373/614/r2/ar1113
- Abdo et al. 2009 doi 10.1103/PhysRevD.80.122004
- Primary Protoes;
 - Aguilar et al. 2015 doi:10.1103/PhysRevLett.114.171103
- Secondary Protons:
- Mizuno et al. 2004 http://stacks.jop.org/0004-6373/6144=2/a=1113
- Primary Alphas:
 - Aguilar et al. 2015b doi:10.1103/PhysRevLett.115.211101
 - Primary Electrons;
 - Aguilar et al. 2014 doi:10.1103/PhysRevLett.113.121102
 - Mizuno et al. 2004 http://stacks.ico.org/0004-637X/614/i+2/s=1113
 - Primary Positrons;
 - Aguilar et al. 2014 doi:10.1103/PhysRevLett.113.121102
 - Miguno et al. 2004 http://stacks.jop.org/0004-637X/614/i-2/a=1113
 - Secondary Electrons:
 - Mizuno et al. 2004 http://stacks.jop.org/0004-6373/614/r2/sr1113
 - Secondary Positrons:
 - Miguno et al. 2004 http://stacks.iop.org/0004-6373/614/i-2/a=1113

AE9/AP9 have been updated to version 1.5

- More data from experiments
- Absolute results changed (softer spectrum)
- Relative results remained the same (550 km, low inclination orbit still favored)

Electrons

Protons

Electrons

Protons

werage % time spent in the SAA

South Atlantic Anomaly: Model Update

29

30

South Atlantic Anomaly: Activation Simulations

Divided in 3 steps:

- Calculation of the created isotopes: 10⁶ events, AP9 differential spectrum
- Costant irradiation with cool-down: 0, 60, 120, 300, 600 s
- Activation: 60 s observation after cool-down
- Reconstruction

South Atlantic Anomaly: Activation Simulations

South Atlantic Anomaly: Activation Simulations

General Background: Activation Simulations

Calculated for:

- Albedo neutrons, primary and secondary protons
- 1 year of costant irradiation
- 550 km, 0° inclination

36

General Background: Activation Simulations

Conclusions

- The description of the different background components has been updated
- Python macros are already available on github
- Activation simulations for the SAA confirms choice of 550 km,
 i < 5° orbits
- SAA (for i < 5°) and albedo neutrons activation negligible wrt primary/secondary protons
- Paper comprising LEO general background plus
 e-ASTROGAM activation

Performance: where we left

Performance

Performance: Vertex Finder Algorithm

MEGAlib (used also as Compton/Pair discriminator):

- One layer with exactly one hit
- Below: at least two layers with exactly two hits
- Above: no hits

AGILE:

- Kalman Filter used on every possible combination of hits on the first two planes
- \blacksquare The couple of hits whose track has the least χ^2 is chosen as the vertex

Performance: New Vertex Finder Algorithm

New approach

- Default MEGAlib search is performed. If a vertex is found it is used, as previously.
- 2 If the search fails, the approach used in AGILE is implemented.
- If the Kalman Filter fails or succeed but with too high χ²
 (ensure a good quality of the search and minimize the number of mislabeled events), the event is not considered as created by a pair.

Performance: New Vertex Finder Algorithm

Performance

Performance: New Vertex Finder Algorithm

Performance: New Vertex Finder Algorithm

Percent difference in the number of events with the two vertex finder algorithm

		Percentage					
		10 MeV	30 MeV	50 MeV	100 MeV	300 MeV	3000 MeV
Identifiable		0.33	0.03	0	0.02	-0.01	0.05
Reconstructed	Single site	0	0.1	0	0	-0.09	0.11
	Compton	0.53	-0.3	-0.19	0.04	-0.04	0.49
	Pair	32.57	61	71.54	78.08	74.36	21.66
	Muon	-14.5	-34.27	-41.11	-42.39	-37.23	-25.89

Conclusions

- A new vertex algorithm was implemented
- Effective area now comparable to the paper results
- Compton performance seems to be unaffected by the change
- A non-disruptive veto using the segmentation of the side AC needs to be implemented

	Performance		

Bibliography I

 M. Kole, M. Pearce, M. Muñoz Salinas. A model of the cosmic ray induced atmospheric neutron environment. *Astroparticle Physics*, 62:230–240, March 2015. doi:

10.1016 / j.astropart phys. 2014.10.002.

M. Türler et al. INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission. A&A, 512:A49, March 2010. doi: 10.1051/0004-6361/200913072.

Bibliography II

- T. Mizuno et al. Cosmic-ray background flux model based on a gamma-ray large area space telescope balloon flight engineering model. *The Astrophysical Journal*, 614(2):1113, 2004. URL http://stacks.iop.org/0004-637X/614/i=2/a=1113.
- M. Ackermann et al. The Spectrum of Isotropic Diffuse Gamma-Ray Emission between 100 MeV and 820 GeV. ApJ, 799:86, January 2015. doi: 10.1088/0004-637X/799/1/86.
- S. Sazonov, E. Churazov, R. Sunyaev, M. Revnivtsev. Hard X-ray emission of the Earth's atmosphere: Monte Carlo simulations. MNRAS, 377:1726-1736, June 2007. doi: 10.1111/j.1365-2966.2007.11746.x.

Bibliography III

- E. Churazov, S. Sazonov, R. Sunyaev, M. Revnivtsev. Earth X-ray albedo for cosmic X-ray background radiation in the 1–1000 keV band. *ArXiv Astrophysics e-prints*, August 2006.
- A. A. Abdo et al. Fermi large area telescope observations of the cosmic-ray induced γ-ray emission of the Earth's atmosphere. Phys. Rev. D, 80(12):122004, December 2009. doi: 10.1103/PhysRevD.80.122004.

Bibliography IV

- M. Aguilar et al. Precision measurement of the proton flux in primary cosmic rays from rigidity 1 gv to 1.8 tv with the alpha magnetic spectrometer on the international space station. *Phys. Rev. Lett.*, 114:171103, Apr 2015a. doi: 10.1103/PhysRevLett.114.171103. URL https://link.aps.org/doi/10.1103/PhysRevLett.114.171103.
- M. Aguilar et al. Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 gv to 3 tv with the alpha magnetic spectrometer on the international space station. *Phys. Rev. Lett.*, 115:211101, Nov 2015b. doi:

Bibliography V

10.1103/PhysRevLett.115.211101. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.115.211101.

M. Aguilar et al. Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. *Phys. Rev. Lett.*, 113:121102, Sep 2014. doi: 10.1103/PhysRevLett.113.121102. URL https://link.aps.org/doi/10.1103/PhysRevLett.113.121102.