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Outline (yesterday)
Lecture 1 (Monday)

Introduction to Machine Learning
Linear Models for Classification and 
Regression

Lecture 2 (yesterday)
Fischer discriminant 
Support Vector Machine (SVM)
Decision Trees
Unsupervised Learning: PCA, clustering
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Support Vector Machine
Find decision boundary maximising the 
margins (distance to the closest points)
Optimization problem
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Using Kernels
to construct non-linear  
decision boundaries 
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Decision Trees

141

Sequential application of  selections  
that maximise separation (S/B)
Use variables that give  
best separation gain  
e.g. Gini index p(1-p)

Problem: too sensitive to fluctuations 
of training data (over-fitting)
Solution: averaging over a forest of 
trees (bagging, random forest, 
boosting)
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Decision Trees 
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Can be used for 
classifications

and regression
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Outline for today
Lecture 3 

Introduction to Neural Networks
Deep Learning

optimisation algorithms
Convolutional networks (CNN)
Recurrent networks (RNN)
Generative adversarial networks (GAN)

Conclusions
Example of using a DNN in TMVA
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Multidimensional PDE 
Estimate the multidimensional probability 
densities by counting the events of each class in a 
predefined or adaptive volume 
Advantages: 

All correlation taken into account
Disadvantages:

Course of dimensionality  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Curse of Dimensionality
As dimension of space grows, volume grows 
exponentially that available data become sparse

Example: generate n points {x1,….xn} in [0,1]
How many have xi  < 0.5 ? 

145

1d :  50% 2d :  25% 3d :  12.5% 4d :  6.25%
[http://statpics.blogspot.ch/2014/11/the-curse.html]

n-d :  2-n
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Outline for today
Lecture 2 (yesterday)

Fischer discriminant 
Support Vector Machine (SVM)
Decision Trees
Unsupervised Learning: PCA, clustering

Lecture 3 (today)
Introduction to Neural Networks
Deep Learning
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Reminder of Logistic Regression

Linear classifier 

Sigmoid function
convert distance to decision  
boundary to class probabilities

Cross Entropy Loss Function
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Logistic Regression : Graphical Representation

148

input output
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Adding Non Linearity
Extend by adding non linearity to decision 
boundary
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h(x;w) = w

T
x ! w

T�(x)

where �(x) ⇠ {x2, sin(x), log(x), ....}
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Non Linearity
Problem: how to choose function ɸ(x) for the 
non linear 𝐑m → 𝐑d transformation ? 
Solution: Learn function directly from the data

parametrize ɸ(x) = ɸ(x;u)
u is a set of parameters which will be learned 
from the data
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Given input x , vector of size m
Define d basis functions ɸj(x;u) with j = {1,…d}for 
transforming 𝐑m → 𝐑d

The parameter vectors (of dim m) uj can  
be represented as a matrix  U with  
dimension  d x m

σ is for example the sigmoid activation function
one could use also other functions (e.g. tanh, RELU)

Neural Networks 
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Feed Forward Neural Network
Full model becomes 
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Multi Layer Neural Network
Model can be extended to multi-layers 
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Additional parameters matrix V with dimension e x d 

h(x;w,U,V) = w

T�(V�(Ux))
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Bias Vector
Also a bias node (a vector) in addition to the 
weight matrices 
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�(x;u) = �(Ux+ b)

Bias can be absorbed in weight parameters by assuming an  
additional input variable x0 always equal to 1



L. Moneta Data Science School in (Astro) Particle Physics,  Lisbon, 12-14 March 2018

Function Approximation Theorem

A feed-forward neural network with a single 
hidden layer with a finite number N of neutrons 
can approximate any continuous function f(x) in 
𝐑m

 only mild assumptions on the non-linear 
activation function (e.g. works with a sigmoid, 
but also with others)

But theorem does not tell anything about the 
parameters and how many are needed
How do we find the optimal network parameters ?
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Neural Network Training

156

h(x;w,U1, ...Un) = w

T�n(Un�n�1(.....�1(U1x)))

Neural network model 

Build  loss function 
Binary Classification:  Cross Entropy loss

Regression: Square Loss (using directly output)

Minimize the loss function with respect to the 
parameters w and U  
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BackPropagation
Make use of chain rule of differentiation to compute 
efficiently the gradient w.r.t to network parameters (weights)
Loss function is computed from several layers

Forward step: 
compute activations at each layer

Backward step: 
compute activation gradient
compute weight gradient 

Compute Loss Gradient 
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BackProp

158

Forward pass
compute activations

Backward pass

compute
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Neural Network Training
Repeat for each parameter updates forward-
backward pass to compute the loss function gradient

each iteration through all dataset is called epoch
Use a validation set to examine for overtraining and 
to decide when stopping 
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Gradient Descent

160

[M. Kagan]

Minimize Loss function by repeated gradient 
steps:

Need to compute gradients of Loss
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Gradient Descent Problems 
Computation of gradient can be costly

Require passing on the full data set
large memory usage

Loss function is not convex
many local minima and saddle points
number of parameter can be very large  
(e.g. in complex deep neural networks)

Standard gradient descent algorithm will not work
Quasi-Newton methods using approximate Hessians to 
accelerate convergence will work even less 
Solution: 

Stochastic Gradient Descent (SGD)
161
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Stochastic  Gradient Descent (SGD) 

Solution: 
compute the gradient on a random subset of 
data (mini-batch)

update weights after each mini-batch 
computation
noise estimates average out
scale well with large data sets
can be helpful to jump out of local 
minima
convergence can be difficult

Several variants exists
162

[http://danielnouri.org/notes/category/deep-learning/]



L. Moneta Data Science School in (Astro) Particle Physics,  Lisbon, 12-14 March 2018

Gradient Descent 
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Variants of Gradient Descent 
Different algorithms have been developed having 
different rules in computing adaptive update rates 

Momentum
Nesterov accelerated gradient
Adagrad
Adadelta
RMSprop
Adam 
Adam extensions

Different performances in convergence speeds
Largely dependent on the problem (e.g. sparsity of data)
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Gradient Descent: Momentum
Increase updates for dimensions whose 
gradients point in the same directions
Reduces updates for dimensions whose 
gradients change directions
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Optimizer Visual Examples

166

[S. Ruder]

Optimizer steps on loss 
function contours

Optimization on loss function  
saddle points
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Optimizer stopping rule
Early stopping by monitoring validation error 
during training

If validation error does not decrease after some 
iterations stop training 

167



L. Moneta Data Science School in (Astro) Particle Physics,  Lisbon, 12-14 March 2018

Activation Functions
sigmoid:

derivative

nearly 0 when x far from 0 !  
Vanishing gradient problem

tanh:
similar problem with gradient

ReLU : Rectified Linear Unit
ReLU(x) = max{0,x}
Derivative constant and not vanishing
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Regularization
Two possible techniques to avoid overfitting 

L2 regularisation
Add to Loss function 
Avoid weights to be too large and saturate activation 
function. (Gaussian prior on weights)

Drop-Out
Randomly remove  
nodes during training
Basically like an averaging  
model procedure
Found to be very effective  
to reduce overfitting
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⌦(w) = kwk2
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Deep Learning
Deep Neural Networks (DNN)

An artificial neural networks using several hidden 
layers

DNN can provide significant performance improvements
Very popular in recent years thanks to improvement in 
computing performances (e.g. GPU usage)
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Deep Learning

171
[S. Gleyzer]
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Imagenet Challenge

172

In 2017 ~ 3% 

Year

Image Recognition Challenge

Deep Learning Introduced

Human Performance 5%
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Deep Learning Performances
Example of Deep Learning for classification on  HEP data set 

173

DNN vs BDT

High classification  
performance compared to  
other ML methods 
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Deep Learning Performances
Example of Deep Learning for classification on  a HEP data set 
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DNN vs Standard ANN

• DNN: 5 hidden layers 
with 256 neutrons

• SNN: 1 hidden layer 

Significant performance  
improvement in deep vs.  
shallow

DNN learns the high level  
features. Almost no difference  
in performance when using  
only low level features 
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Deep Learning for Regression

175

[S. Gleyzer]
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Convolutional Neural Networks

176
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Convolutional Neural Networks
Shared weights between neurons
Neurons take only subsets of input

much less parameters than a traditional DNN
able to handle a large number of  inputs 

e.g every pixel in an 2D or 3D image
Very powerful for image recognition
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Convolutional Neural Networks

178

Input (3 x 4) 

Kernel (2x2) 

Output (2x3) 

[www.deeplearningbook.org]
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Convolutional Neural Networks

179

Dense architecture:  
every  input connects to  
all output and vice versa

Convolution:  
sparse connectivity  
e.g. kernel width=3

Parameter sharing: 
same weights across neurons

[www.deeplearningbook.org]
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CNN in HEP
Neutrino event reconstruction

Separate W-jets from  
quark/gluon jets
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Recurrent Neural Networks
Able to process a sequence of data {x(1),…., x(t)} 

e.g. time dependent data

181
weights U and W are shared 

U 

W
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Model of a RNN 

182

All nodes share the weights U,W,V

U : input-hidden weights
W : hidden-hidden weights 
V: hidden-output weights
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Power of RNN

183
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LSTM
RNN suffers from problem to preserve long recurrence 
memory vs to the short ones

gradient may explode or vanish due to recursive relations  
(e.g.  st = W st-1 → st = Wts1)

LSTM cells is a modified RNN cells introducing gates to 
prevent this problem and preserving better long term memories
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Deep Autoencoder
An unsupervised neural 
network 
Trained by setting the 
target values yi equal to the 
inputs xi

Can be used for 
dimensionality reduction 
or anomaly detection

and as a generator  
(variational auto-encoders) 
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GAN: Generative Adversarial Network

Generator network:   
output data from a random input  G(x)

Discriminator network: 
discriminate the generated data from real ones 
output probability D(x) that data are from real input  
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GAN Optimization

Want to find discriminator parameters such that data coming 
from training sample and real one are as similar as possible
Find generator parameters that make random (fake) generated 
data unlikely 

classified by the discriminator as fake. 
minimize for G cross-entropy  log(1 - D(G(z))

Optimization of a GAN is then a min-max player game
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Training of GAN
Iteratively procedure: 

Train first discriminator with real data and un-trained output from 
generator (fake data)

learn to discriminate 
Train generator with a fixed discriminator
Repeat the procedure for few iterations

188
Pass 1: Train Discriminator Pass 2: Train Generator
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Example: 3d GAN for Calo Images
GAN as possible fast simulations of calorimetric images

Train with full simulated (Geant4) images 
use 3d convolutions

189

[S. Vallecorsa]
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Some General Advices
There is no a-priori algorithm that will work 
best for every supervised learning problem

a model could work very well on one 
problem and poorly on another
need to try several algorithms

Let’s look at some empirical conclusions
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Empirical Analysis
From structured data, expressing high level 
features (e.g. with physical meaning )

Decision tree based algorithms (Random 
forest, boosted decision trees) work very well

From unstructured data (low level data) 
deep learning algorithms are winning

network learns high level structures 
CNN for image classification
RNN for text and speech recognition
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Learning Curve: High Variance
Look at the learning curve

192

Typical curve for high variance
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Learning Curve: High Bias
Look at the learning curve

193

Typical curve for high bias
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Possible Fixes 

194

[M. Kagan]
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Deep Learning in TMVA
Deep Learning library in ROOT/TMVA

parallel evaluation on CPU
implementation using  
OpenBLAS and TBB

GPU support
CUDA
OpenCL

Excellent performance and  
high numerical throughput 

For more information see 
https://indico.cern.ch/event/565647/contributions/2308666/attachments/1345668/2028738/tmva_dnn_gpu.pdf
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Deep Learning Performance
CPU Performance

Intel Xeon E5-2650, 8 × 4 cores 
Estimate peak performance:

16 GFLOP/s / core

GPU Performance
NVIDIA Tesla K20
Peak performance: 

1.17 TFLOP/s with double precision

196

Double Precision
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Deep Learning Performance 

197

DNN vs Standard ANN DNN vs BDT

Using Higgs public dataset with 11M events
Significant improvements compared to shallow networks and BDT  

• DNN: 5 hidden layers 
with 256 neutrons

• SNN: 1 hidden layer 
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Deep Learning Developments in TMVA

Focus on Deep Learning tools
Extend existing Deep Neural Network classes 
 by adding:

Convolutional Neural Network 
very powerful for image data sets

Recurrent Neural Network
useful for time-dependent data

Deep Auto Encoder 
useful for dimensionality reduction  
(pre-processing tool)
can be used as unsupervised tool  
(e.g. for anomaly detection)

198



L. Moneta Data Science School in (Astro) Particle Physics,  Lisbon, 12-14 March 2018

Convolutional Neural Network
Development well advanced, plan is to integrate 
soon in ROOT master, for next ROOT development 
release after 6.12
Supporting both CPU and GPU

parallelisation and code optimisation is essential
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TMVA Interfaces
External tools are available as additional methods in TMVA and 
they can be trained and evaluated as any other internal ones.

RMVA: Interface to Machine Learning methods in R
c50, xgboost, RSNNS, e1071

see http://oproject.org/RMVA

PYMVA: Python Interface
scikit-learn with RandomForest,  
Gradient Tree Boost, Ada Boost)

see http://oproject.org/PYMVA

Keras (Theano + Tensorflow)
support model definition in Python
see https://indico.cern.ch/event/565647/contributions/2308668/attachments/1345527/2028480/29Sep2016_IML_keras.pdf

Input data are copied internally from TMVA to Numpy array
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Conclusions
Machine learning is a powerful branch of data 
science 

Many methods and applications
Lectures covered basics and advanced methods 
(boosted decision trees, deep neural networks,…)
Very exciting field (e.g. deep learning) with lots 
of new developments and applications 

ROOT provides Machine Learning Tools in TMVA and 
interfaces to most popular tools (scikit-learn, Tensor 
flow, keras,..)
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