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Outline
Lecture 1 (yesterday)

Introduction to Machine Learning
Supervised Learning
Linear Models

Regression
Classification

Hypothesis Tests and ROC curve
Overfittig and Regularization
Cross-Validation
Machine Learning Software

Introduction to ROOT/TMVA
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Mathematical Modeling
Key element is a mathematical model

Learning
Estimate statistical model from the data

Prediction and Inference
use the statistical model to make predictions 
on new data points and infer properties of 
system(s)
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Learning

88

Supervised Learning
Classification
Regression

Unsupervised Learning
Clustering
Dimensionality Reduction
Anomaly Detection

Reinforcement Learning
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Classification and Regression Tasks

Classification - How to find the best decision boundary ? 

Regression - How to determine the correct model ?

89
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Supervised Learning
How does it works ? 

Given the data { xi ∈ 𝓧 } and targets { yi ∈ 𝓨 }
 choose a model 𝓕 = { 𝑓(x; w) }   and with optional constraint 
𝛀(w) mapping y = 𝑓(x; w)
Design a Loss function measuring the cost of choosing badly 

Find best values of the parameters w  
that minimize the loss function L(w, x)

Estimate the final performance on an independent data set
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Linear Decision Boundary
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Least Square Regression
Least Square Loss function

Find minimum of L(w) 

Used also for parameter estimation  
i.e. Least square fit  (𝓧2 fit)
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Regularization
Method to find optimal model is to add a parameter 
constraint in the loss function

aim to trade some bias to reduce variance
Modify loss function (e.g. for linear regression): 

L2 norm  
equivalent to Gaussian prior on the weights

L1 norm   
equivalent to Laplace prior on the weights 93

L(w) =
1

2

NX

i=1

(yi � f(xi;w))2 + �⌦(w)

⌦(w) = kwk2 =
X

i

w2
i

⌦(w) = kwk =
X

i

|wi|



L. Moneta Data Science School in (Astro) Particle Physics,  Lisbon, 12-14 March 2018

What is the correct model ? 

94

f(x|w) = w0 + w1x f(x|w) = w0 + w1x+ w2x
2 + w3x

3
f(x|w) = w0 + w1x+ ....+ w9x

9

Under fitting
Large Bias

Over fitting
Large Variance

model does not 
reproduce well the data 

model reproduce the 
training data too well 
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Hyper-Parameter Optimization

95

overfitting

[M. Kagan]
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ROC Curve
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Optimal classifier  
maximises the  
area under the  
ROC curve
(AUC)

E. Toerne]
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Outline for today

Lecture 2 (today)
Fischer discriminant 
Support Vector Machine (SVM)
Decision Trees

Lecture 3 (tomorrow)
Introduction to Neural Networks
Deep Learning
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Fischer Discriminant
Find projection that maximises the separation 
between two classes
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Fisher Linear Discriminant
How to find the projection maximising the 
separation ?
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Fischer Discriminant
Easy to compute

requires computing data 
covariances (within class 
matrix) for training data

Easy to understand (visual 
representation)
Optimal classifier for separating 
Gaussian data with same 
covariance but different mean
Performance might be poor for 
complex data (when a non linear 
decision boundary is needed)
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Support Vector Machine
find a decision boundary which maximise the 
possible margin (separation between the 
points)
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Linear Separability
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Best Decision Boundary
How to find the optimal decision boundary ? 
For classes which are linearly separable a possible 
solution is to find:

maximum distance between decision boundary 
and the points (Maximum Margin Classifiers)
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Best Decision Boundary

104

Linear classifier :

Distance point xi to decision  
boundary : ( yi = {-1,1}  )

Optimization problem

h(x;w) = w

T
x+ w0
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Support Vector Machine
Loss function for SVM

C is the regularisation hyper-parameter
control how much softening/hardening of the 
boundary is allowed. 
increasing C makes the boundary harder 
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Hinge Loss Function
The Hinge Loss function 
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L(yi, xi;w) = max(0, 1� yih(xi;w))

for linear classifiers

This loss function  penalises  
only data points that give   
|h(x) | < 1 

yi = {�1, 1}

h(x;w) = w

T
x+ w0

yih(x;w)

Hinge Loss

Logistic Loss
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SVM : Soft/Hard Margin

107
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SVM: Kernel Trick
For data which are not linearly separable can 
use a mapping ɸ(x) from 𝐑m→𝐑k

Decision boundary can be written as 

Kernel function K(x,x’) = ɸ(x) ɸ(x’) 
Kernel trick: 

compute the Kernel K(x,x’) without 
computing ɸ(x)
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SVM Kernels

Linear Kernel: 

Polynomial Kernel:

Gaussian Kernel: 
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SVM: Kernel Examples

110

Linear  
kernel

Gaussian  
kernel
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Conclusions on SVM
Powerful tool effective with high dimensional data 
Flexible in dealing with non linearity by choosing 
different possible kernels
Disadvantages: 

complex algorithm for training
does not scale well with large data sets

complexity between O( Nfeatures x N2) and O(Nfeatures x N3) 
depending on implementation
libSVM best implementation (available in TMVA with R 
interface or in scikit-learn)
TMVA native SVM implementation is  not very 
computational efficient
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Decision Tree
Example: 

Predict to play or not to play golf depending on 
whether conditions

112
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Decision Trees
Node : 

test one attribute xi (e.g. 
Wind )

Branch: 
select one value for xi

Leaf:
 predict probability for yi   

P(y|x)

113

Decision trees are like multi-dimensional 
histograms (bins are constructed recursively)
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Building a Tree
Scan along each input variable xi and propose a 
DECISION

A cut on value that maximised class 
separation

114
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Decision Tree: Splitting

115

Partition the data using a sequence of cuts
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Building Decision Trees
Choose decisions that maximise separation 
between classes (e.g. signal and background)
After each decision one can estimate the class 
probabilities p(yi | x) 

116

Pblue =
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Training Decision Trees 
Measure separation gains with impurity 
functions H to have optimal split

optimize splitting by  
minimise the impurity

Greedy training: optimize one splitting at a 
time and not all together at the same time

117
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Decision Trees: Impurity Functions 

Measure separation gains with impurity 
functions H to have optimal split

Classification
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Splitting
Impurity as function of proportion p

119

H(p)

p
Gini index and Cross-entropy  
rescaled to pass through (0.5,0.5)



L. Moneta Data Science School in (Astro) Particle Physics,  Lisbon, 12-14 March 2018

Decision Tree: Regression
In regression we want to estimate a continuous 
target y

compute average of y in region after splitting

use it for computing square error

minimize total square error after splitting
It is like finding an optimal binning of the data
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Example of Decision Tree Regression

121
[Cambrige Coding Academy ]
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Building Decision Trees
By applying different decision that maximised the 
separation, we build regions of increasing purity. 
When to stop building a tree ? 

in principle we could stop when all events are 
classified

overfitting 
Need to stop then 
earlier. Different rules:

fixed depth
fixed minimum sample
minimum information  
gain, etc..
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Mitigating Overfitting

123
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Ensemble Methods
How can we reduce variance of the model and 
not increasing the variance ? 
Train slightly different models

take majority vote (classification)
average prediction (regression)

Bias does not increase because average of 
ensembles 
Variance decreases because spurious pattern 
picked by a model will not be picked by others
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Example Ensemble Methods

Ensemble methods are very useful to overcome problem of 
overfitting with decision trees
Combining several methods has been found to be very 
powerful
Two techniques exist for ensemble methods: 

Bagging and Boosting
125
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Ensemble Methods
Bagging (Bootstrap aggregation)

sample dataset with replacement and train a different 
model on each trained set
take average or classify using a majority vote
Random Forest

bagging using randomised trees
random subset of features used at each split

Boosting
Each tree trained on a different weighting of full training 
set. 
give more weight to events previously not correct classified
Popular algorithms: AdaBoost, GradientBoost

126

h(x) =
1

Ntrees

NtreesX

i=1

hi(x)



L. Moneta Data Science School in (Astro) Particle Physics,  Lisbon, 12-14 March 2018

Adaptive Boosting
Train in stages
Adaptive weights
ADABoost: Freund & Schapire 1997 
Misclassified events get a larger weight going 
into the next training stage
Classify with a majority vote from all trees
Works very well to improve classification power 
of “greedy” decision trees 

127

h(x) =
NtreesX

i=1

↵ihi(x)/
NtreesX

i=1

↵i



L. Moneta Data Science School in (Astro) Particle Physics,  Lisbon, 12-14 March 2018

ADABoost

128
[E. v. Toerne]
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Example Decision Trees
Example of Random Forest
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Conclusions on Decision Trees
Methods based on ensembles of Decision Trees work 
very well

several variants exists (Random Forest, ADABoost, 
Gradient Boost)
Rarely overfitting
Robust to noisy data
Can use heterogeneous or missing inputs
Easy and fast to train them 

 Example: using 179 classifier on 121 public data sets: 
Random Forest found best classifier
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HEP Example: BDT for H→𝛾𝛾
Boosted Decision Trees (BDT) for H→𝛾𝛾
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Decision Trees in TMVA
TMVA provides a very good implementation of 
Decision Trees (BDT)

ADABoost with 3 different variants
Gradient Boost
Bagging 
Random Forest (bagging and randomised 
trees)

Several configuration options available  
(See TMVA Users Guide)
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Unsupervised Learning
Given some data D = {xi }, but no labels
Find possible structure in the data

Clustering: 
partition the data into groups 
D = { D1 ∪ D2 ∪ D3…..∪ Dn }

Dimensionality reduction:
find a low dimensional  
representation of the data  
with a mapping Z = h(X) 
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Principal Component Analysis
Unsupervised Learning Method
Given data D = {xi }

find directions that explains the most variation 
of the data
Equivalent to find eigenvectors  
of the data covariance matrix

134

projected  
direction

u1 is eigenvector of S
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Principal Component Analysis

135
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K-Means clustering
Initialize means !k randomly 

e.g using k-means++ initialization
Assign data to closest prototype cluster looking at the 
minimal distance 

Update the  !k values 
using prototype clusters 

Re-assign data using  
new  !k values
Iterate until convergence
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Clustering in HEP
Jet clustering 

Sequential clustering algorithm
Combine particles together to form jets

137
[M. Kagan]


