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L. Moneta

Outline

Lecture 1 (today)

Introduction to Machine Learning
Supervised Learning
Linear Models

Regression

Classification
Hypothesis Tests and ROC curve
Overfittig and Regularization
Cross-Validation

Machine Learning Software
Introduction to ROOT/TMVA

Data Scien

IMVA
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Outline (2)
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Lecture 2:
Support Vector Machine (SVM)

Decision Trees

Lecture 3:
Introduction to Neural Networks
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References

Lots of materials presented taken from these
lectures:

M. Kagan: CERN Academic Training Lectures (2017)
S. Gleyzer: TAE 2017 Lectures

A. Rogozhnikov: Lecture at Yandex summer school of
Machine Learning in HEP (2016)

Books:

Elements of Statistical Learning (Friedman et al...)

Pattern Recognition and Machine learning (Bishop)
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What is Machine Learning ?

Field of study that gives computer the ability to

learn without being explicitly programmed
(Arthur Samuel, 1959)

Better definition (T. Mitchell, 1998)

Study of algorithms that improve their performance
P for a given task T with more experience E

Example:

Task: Identity Higgs boson, faces in pictures, etc...

Data Science School in (Astro) Particle I’h_\'sics, Lisbon, 12-14 March 2018



Where 1s Used ?

Natural Language Processing
Speech and handwriting recognition
Object and image recognition

Fraud detection

Financial marker analysis

Search engines

Spam and virus detection

Medical diagnosis

Robotics control

Automation: e.g. self-driving cars
Advertising (recommender systems)

Growing very fast !

L. Moneta

Autonomous (“self-
driving”) vehicles
.

FTRIRARVES

Recommendation
engines

a Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018
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Machine Learning in HEP

In analysis and reconstruction
Classifying signal from background events
Reconstructing particles and improving energy / mass
resolution
Particle identification
Energy calibration

In the trigger and Data Acquisition
Quickly identifying complex final states
Data quality monitoring

In computing

Estimate dataset popularity
Optimisation of resources

L. Moneta Data Science School in (Astro) Particle I’h_\'sics, Lisbon, 12-14 March 2018 8



L. Moneta

Machine Learning in HEP
jeté{f -I Q il ;

+ d J 4
[ J [ J [ J \ Radiation along
direction
a- S S 1 C a. 1 O n F e between subjet
No info in S G
-jets
presences
1° subj

Particle Identification

Pattern Recognition (tracks)

Searches for new Physics

Events / 0.25 _geV

Regression i S ey

Function Estimation t

140
m,, (GeV)

e.g. estimate better particle energy
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Example: Higgs Discovery

CMS \s=7TeV,L=51fb"\s=8TeV,L= 53fb1
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3
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My, (GeV) Event selection

Improvement in analysis from all 4 areas

[S. Gleyzer]
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Mathematical Modeling

Key element in machine learning is a
mathematical model

mathematical characterisation of system(s) of
interest, typically via random variable

Chosen model depends on the task and on
the available data

11111111

Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018 11




Mathematical Modeling

Key element is a mathematical model
Learning
Estimate statistical model from the data
Prediction and Inference

use the statistical model to make predictions
on new data points and infer properties of
system(s)




L. Moneta

Mathematical Models

Parametric Models

described with a fixed set
of parameters

v

independent of data set sizes

Binary kNN Classification (k=1)

Non-parametric models

do not have a fixed set
of parameters

X2

x1

complexity grows with data size

Data Science School in (Astro) Particle I’h_\'sics, Lisbon, 12-14 March 2018
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Generative and Discriminative Models

Generative model
Estimate probability density functions p(x,y)

estimate p(x | y) and prior p(y) and then
using Bayesian theorem

p(y Ix) « p(x1y)p(y)
Discriminative model
Model directly the p(y | x)

Majority of methods (e.g. logistic regression,
neural networks) are discriminative models



L. Moneta

Machine Learning Tasks

Classification Regression

RN o?
o e . \\ A . -
Classification N i LS
Regression oS, O 080 o
.b‘. ® s ”...
O ..~’ * |

Clustering

Dimensionality Reduction

Y

o v

. .ﬁi".
L YN pe

" .
o :
%0
9 . * 000 € 00000
0.0 .
o

dimensionality reduction

clustering
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Learning

C— Train
Training i [ Model }
Data g A
- / - Test
Supervised Learning Test N Dat y
Classification
Regression v
Unsupervised Learning g N
Clustering Model
Dimensionality Reduction L Evaluation y

Anomaly Detection
Reinforcement Learning

Data Science School in (Astro) Particle I’h_\'sics, Lisbon, 12-14 March 2018 16



Supervised Learning

Given N examples (events in HEP)
with features (Training Data)

{xi€ X } and targets {yi €Y }

» Learn function mapping y = f(x)
xjis typically a n-dimensional vector (number

of features)

X is a matrix (number of events x number of
features)

yi is instead a scalar

17



Supervised Learning: Classification

1 xi € X } and targets {yi €Y |

» Learn function mapping y = f(x)

Classification : Y are a finite set of labels
* binary classification Y = {0,1}
e.g. Higgs event vs Background events

o multi-class classification Y = {cy,¢cy, ...... ,Cn}

Higgs Kaggle Signal-Background Separation

3 .Class classfication {k = 15, w
" B(main)  § | Test(reweighted)
B s (Train)
00000 -

-
L
Lo *
.
3 ook' oeg o
E. ra. = Wuu
© b 3
'.'igj ¢
L

L. Moneta
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Supervised Learning: Regression

{xi€ X }and targets {yi €Y |}
» Learn function mapping y = f(x)

Regression: Y are Real Numbers

—  Pregictions

MPG
N

) 5000 O
Weight Horsepower

L. Moneta Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018
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Unsupervised Learning

Given some data D = {xi}, but no labels

Find possible structure in the data

*9%e o °

Clustering: g

» partition the data into groups ;&L
D={D:1UDzUDs....UDn}

Dimensionality reduction:

o find a low dimensional
representation of the data
with a mapping Z = h(X)

Ist PC

Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018 20



Example: Clustering

Astronomical analysis:
grouping of galaxies
Genetic analysis in biology
Market Segmentation
Organization of computing clusters
Social network analysis

Grouping of information
(e.g. Google news)

Unsupervised Learning

ON©)

Individuals

Andrew Ng

Data Science School in (Astro) Particle I’hysics, Lisbon, 12-14 March 2018 21



Classification and Regression Tasks

» Classification - How to find the best decision boundary ?

z z

[E. v. Toerne]

. Moneta Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018
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Supervised Learning

How does it works ?
Choose a function with parameters
F={fx;w)}
with optional constraint Q(w)

Design a Loss function measuring the cost of choosing badly

N
1
L{w,x) = — > Ly, f(xi, W) /L‘:,z:'minimum
1=1

Global
cost minimum

\

J(w)

Find best values of the parameters w

that minimize the loss function L(w, x)

w

Estimate final performance on an independent data set

L. Moneta Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018
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L. Moneta

Loss Function Minimization

IIIII

Minimization of Loss Function

Use a labeled training-set to compute loss function
[terative optimisation procedure (e.g. gradient descent) to find
parameter values, i.e. f(x; w), which gives the minimum of the

Loss function
N

1
arg min L(w,x) = arg min ~ ;L(yi, f(xi,w)) + AQ(w)

AQ(w) is a constraint term on the parameters w
regularisation, penalising certain values of w

Data Science School in (Astro) Particle I’h_\'sics, Lisbon, 12-14 March 2018
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Example: Linear Regression

Loss Function often used for regression

Square Error Loss

L(f(x;w),y) = (f(x;w) —y)°
oasuamentx12
Linear Regression : “8‘ R
assume a linear model < %H

foow)=w'x N

Find w* minimum of L(w) =~ & ¢ -

25
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Least Square Regression

Least Square Loss function

L(w) = 5 Z(yi — f(xi;w))”

Measurement XYZ

Find minimum of L(w) Y-

Used also for parameter estimation o %Jf
i.e. Least square fit (X? fit) “

% jf \ Maximum

10— )
- % Deviation
C "‘ IIIIIIIIIIIIIIIIIII

Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018
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Parameter Estimation

Model process using likelihood function of the
observed data

L(w) = P(y|x;w) Hp (yilxi; w

Parameter Estimation: fmd parameters that
maximise likelihood function

Equivalent: minimise log-likelihood

w' = argmax L(w) = arg min — log £

27



L.

Moneta

Parameter Estimation: Linear model

Assume: yi = f(xi) + ei with f(x) = wxi

With Normal random error e~ N(0,0) p(ei) x exp(-€i%/(26?)
the model for yi is described by a p(yifxi,w) & exp((wxi-yi)*/(26?)

The likelihood function is then

eeeeeeeeeeeeee

L(w) = p(y|x, w) Hp yilzisw) s
e
—log L(w) = Z(y’b - wixi)2 %H | \"‘

The negative log-likelihood function is equivalent to the least
square loss

Probabilistic interpretation for our simple regression machine
learning model

Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018 28



Classification

Want to learn a function to separate different
class of events.

Problem is to find best decision boundary

Rectangular cuts Linear discriminant Nonlinear discriminant

L. Moneta Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018 29



L. Moneta

Linear Decision Boundary

Want to separate 2 classes

Linear model

h(x;w) =w'x
[Bishop]
Predict class 0 if h(x) <0 otherwise class 1

if h(x) >0

distance from boundary = h(x)/ | Iw| |

Data Science School in (Astro) Particle I’h_\'sics, Lisbon, 12-14 March 2018 30



L. Moneta

Logistic Regression

Linear discriminant | h(x;w) = wlx

Use probability that example x is in a given
class using the sigmoid function

ply =1|x) =p; =

.| Logistic Sigmoid
1

o o=y . further from the boundary,
- more certain about class

Data Science School in (Astro) Particle I’h_\'sics, Lisbon, 12-14 March 2018
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Logistic Regression

Probabilistic interpretation

2 classes classification: Bernoulli process

p(yilzi) = (pi)*" (L —p;) ¥y ={0,1}
Negative Log-Likelihood is then

—InlL = — Z(yz Inp; + (1 —y;) In(1 —p;))

1

Binary Cross Entropy Loss function

32



Binary Cross Entropy Function

Lw)=— Z(yz Inp; + (1 —y;) In(1 — p;))

1

-log(p, |
: -log(1-p;) /

33



Logistic Regression

Find the values of w minimising the cross-
entropy loss function

*

w* = arg minw -InL(w)

Use iterative algorithm to find optimal value
w” (e.g. gradient descent )

p(y=1 | x)

L. Moneta Data Science School in (Astro) Particle I’h_\'sics, Lisbon, 12-14 March 2018
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Gradient Descent

Minimize Loss function by repeated gradient
steps

OL(w)
ow

— Compute gradient w.r.t. parameters:

OL
— Update parameters w —w—n (‘)(W)

W

— 1 1s called the learning rate, controls
how big of a gradient step to take

Many variants exists especially in case of deep | ‘
neural network training M. Kagan]
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Why Sigmoid function?

If we use probabilistic theory and Bayes
statistics, the posterior p(y=11x) :

plzly=1)p(y = 1)
p(zly =1)p(y = 1) + p(z|y = 0)p(y = 0)

plzly=1)p(y = 1)
p(zly = 0)p(y = 0)

p(y = 1|z) =

Then by using z = In

1
1+ e %4

ply = 1jz) =



Hypothesis Test
%_
e

Which hypothesis is the most consistent with the

Data

data we have observed ?

L. Moneta Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018 37



Hypothesis Test

Hy: null hypothesis

the hypothesis we want to reject

e.g. the data contains only background
H;: alternative hypothesis

e.g. the data consists of signal + background events
Critical region:

regions of the test statistics defining the hypothesis rejection
« : significance level (Type 1 error)

probability to reject Hy when is true (false positive)
p: Type 2 error

probability to accept Hy when is false (false negative)

1-f: power of the test

L. Moneta Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018 38



L. Moneta

Classification as Hypothesis Test

Ho: Background X > Xp : reject background and
Hi: Signal accept signal
A Signal density

p(x, s) =p(x | s) p(s)

Background density
p(x, b) =p(x | b) p(b)

density
p (x)

Optimality criterion: minimize the error rate, o + 3
[S. Gleyzer]
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Hypothesis Test

State of Nature
Decision we make | H_ is true H, is false
AcceptH, ok Type ll error
probability -
RejectH, Type |l error | ok
probability o

Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018
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ROC Curve

—

Optimal classifier
maximises the |
area under the

Type-1 error large

ROC curve | Type-2 error small
0 -
(AUC) 0 8signal 1
E. Toerne]

Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018 41



L. Moneta

(Signal efficiency)

ROC Curve

Receiver Operating Characteristic (ROC) Curve
classifying quarks vs. gluons
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L. Moneta
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Sensitivitv and Soecificity

The Truth
Test Has the disease Does not have the disease
Score: -
- True Positives False Positives
Positive PPV = —
(TP) (FP) TP +FP
a b
C d
False Negati T Negati NPY = LLL
. alse Negatives rue Negatives e —
Negative FN) (TN) TN +FN
Sensitivity specificity  oensitivity:
TP TN Signal efficiency
TP +FN TN +FP True Positive rate
. Specificity:
a ..
o, ———— s 1.- Background efficienc
a+c d+b

True Negative rate
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Purity

Purity = Number of signal Events passing selection/ Total number of
events passing the selection

Purity = True Positive/ ( True Positive + False Positive)

important value but dependent on total number of Signal /
Background events)

Optimize selection depending on analysis

e.g. S/V(S+B) or expected Asimov significance for discovery

— — —. Signal purity

Signal efficiency

------- Signal efficiency*puri
Background efficiency s/g\js,.g LY
= : ; 7 b
A Signal density E‘ 1k ; %
plx, 5) =p(x | 5) p(s) g L N7 s £
2 08 5 G- 1 9
Background density £ - —20 @
2 2 2 - N
32 | px,b)=px|b) p(b) s I i\ ]
5 5 06 g X 15
o - ——! \ \ ]
0.4 \ \ 10
> X 0.2 _—-»-Fonooo-slgnal-anmooo-back round-\ -
X [ events the maximum Si {S+B is \ \ N
.. . e [ 26.61 when cutti 0.04 3
Optimality criterion: minimize the error rate, @ + o Lpenone st 4% L 0

-1 -0.5 0 0.5 1
Cut value applied on LD output
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Neyman-Pearson Lemma

The likelihood ratio A(x) used as selection

criteria, gives for each selection efficiency a the
best possible rejection of Hy in favour of H;
(background rejection)

_ L(a|Hy)
L(z[H)

A(x) <c

where PANX) <c|Hp) =«

The cut value c defines the rejection
region of the null hypothesis Ho



Polyonial Regression

TMultiGraph of 3 TGraphErrors

250
200
150
100

50—

f(x|w) = wo + wix + waox
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What is the correct model ?

flx|w) = wg + wix f(z|w) = wo + w1z + waz® + waz®  f(x|w) = wo + wix + .... + wox”
Under fitting Over fitting
Large Bias Large Variance

model does not model reproduce the

reproduce well the data training data too well

neta Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018 48



Overfitting

Model reproduce too well training data
In the extreme limit it will follow exactly the
data (L(w) =0)
[t might fail miserably on an independent data
set (a validation/test data set)

15
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L. Moneta

Overfitting

Same happens also for classification
(e.g. logistic regression )

normal overfit

96y + Oyxy &+ Byxy)

X,

glfo & Oyzy 4 Gaxa + O3z 4 0422 4 Bsxyza) 90 4+ Oy + Opzs 4 Byx 4
0423 + Oz x5 + Ogxizy +
bz 23 + Bgxlzd + gz +...)

In case of overfitting decision boundary follows the data

Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018
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Bias-Variance Trade Off

Simple model under-fit: it will deviate from data (high
bias) but not influenced by its peculiarity (low variance)

Complex model over-fit: it will not deviate from data
(low bias) but it will be very sensitive to the data (high
variance)

Bias : systematic error of the model
Variance: sensitivity of prediction

If model is more complex
will capture more data points =¥ lower bias

will move more to capture the data =» higher
variance
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Bias - Variance Trade Off

Generalization Error

E((y — h(z))*] =

Elly-9)°| + |3—h(=)*| + E[(h(z)— h(z))’]

+
VR
o
fd ®
Qo
N
N—"
\V}

noise

-+ |variance

Error

Optimum Model Complexity

Total Error

Variance

Pt

Model Complexity

Data
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Regularization

Method to find optimal model is to add a parameter
constraint in the loss function

aim to trade some bias to reduce variance

Modify loss function (e.g. for linear regression):
1 N
Liw) = 5 3" — Floaiw))? + AQ(w)

1=1

L2norm Q(w) = ||w]||? = Z w:
equivalent to Gaussian prior on the weights
Llnorm Q(w)=[w| =) Ju;
o equivalent to Laplace priot on.the weights. . ...



weights

L. Moneta

L2 :

Regularization

L(w) = 5(y — Xw)

Q(w) = ||w]|?

Ridge coefficients as a function of the regularization

200 -
100 - ya
/ wn
c
g
/ &
_— T
0 — S
-100 t+
-10
1072 107 10 10 10 107 108 107 10710
alpha
Less regularization >

>+ aQ(w)

Ll: Q(w)=|wl]

Lasso and Elastic-Net Paths

* L2 keeps weights small, L1 keeps weights sparse!

|| — Lasso == = T
— - Elastic-Net
-1.5 -1.0 -0.5 0.0 0.5
-Log(alpha)
Less regularization >
[M. Kagan]
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Hyper-parameter Optimisation

How to find optimal regularisation parameter ?
We need to perform an hyper-parameter optimisation to find
the best total error

Split the data in 3 samples: Training Set Valigattion
e

Training sample
used to train and fit the model
Find best parameter values
Validation sample
used to check the model and measure error as function of hyper-parameter
find best hyper-parameter values
Test Sample
Final check of the model when all parameters have been fixed

Need to be independent than validation since we have tune the model on the
validation sample
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Hyper-Parameter Optimization

Prediction Error

High Bias

LLow Variance

/

Training Sample

/

Test Sample

LLow Bias

High Variance

overfitting

Low

High

Model Complexity

Data

Scien

[M. Kagan]
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CrossValidation

«4— Total Number of Dataset ———p»

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Experiment 5

Divide data randomly in k-folds
Use (k-1) folds for training and 1 fold for validation
Repeat changing the validation set

Use average estimate performances on the k-folds
Can estimate variance on the performance
Especially useful when data set is small

Training

Validation
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ROOT

ROQT is a software toolkit which prov1des bulldmg blocks for:
Data processing
Data analysis
Data visualisation
Data storage

Under the Spotlight Oth N lews

ROOT is written mainly in C++ (C++11 standard)  http://root.cern.ch
Bindings for Python are provided.

Adopted in High Energy Physics and other sciences (but also industry)
~250 PetaBytes of data in ROOT format on the LHC Computing
Grid
Fits and parameters’ estimations for discoveries (e.g. the Higgs)
Thousands of ROOT plots in scientific publications
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poell TMVA TMVA

L. Moneta

ROOT Machine Learning tools are provided in the
package TMVA (Toolkit for MultiVariate Analysis)

Provides a set of algorithms for standard HEP
usage

Used in LHC experiment production and in
several analysis (e.g. Higgs studies)

Easy interface for beginners, powerful for experts

Several active contributors and several features
added recently (e.g. deep learning)
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aeel TMVA TMVA

TMVA is not only a collection of multi-variate methods.
Itisa

common interface to different methods

common interface for classification and regression

easy training and testing of different methods on the
same dataset

consistent evaluation and comparison
same data pre-processing
several tools provided for pre-processing
embedded in ROOT

complete and understandable users guide

L. Moneta Data Science School in (Astro) Particle I’h_\'sics, Lisbon, 12-14 March 2018
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TMVA Methods

The available methods are:
Rectangular cut optimisation
Projective likelihood estimation (PDE approach)
Multidimensional probability density estimation (PDE - range-
search approach)
Multidimensional k-nearest neighbour classifier
Linear discriminant analysis (H-Matrix and Fisher
discriminants)
Function discriminant analysis (FDA)
Artificial neural networks (various implementations)
Boosted /Bagged decision trees

Predictive learning via rule ensembles (RuleFit)
Support Vector Machine (SVM)



New Features

New features added since 2016:

Deep Learning

support for parallel training on CPU and GPU
(with CUDA and OpenCL)

Cross Validation and Hyper-parameter
optimisation
Improved loss functions for regression

Interactive training and visualization for Jupyter
notebooks

new pre-processing features (variance threshold)

L. Moneta Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018 63



L. Moneta

]ﬂ@r

1. Distrust

e

7. Fright

Y
2. Excitement

-

=
!

8. Horror

!

24

[

3. Astonishment

NEEs
Sups

9. Fury

B
)gg; =
T
2N
E

4.Enthusiasm 5. Love 6. Disillusionment

@3 o 3

10. Frustration 11. The End

Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018

64



L. Moneta

Workflow in TM VA

Reading input data ‘ User Training
Script
Select input features and
. create ROOT
preprocessing Target File
A
Training Al TMVA"F:::Z
find optimal classification or S B
. API
regression parameters execute »{—’ _ _________________ -
using data with known labels i -
. w
(e.g. signal and background MC £
events) 2 | execute AP
Q
L] “6
TEStlIlg § API
evaluate performance of the classifier il >{ .............. >
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compare different methods Sxecyte APL__
Application execute API .
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data where labels are not known
Y Y
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TMVA Custumizations and Features

TMVA supports:
ROOQOT Tree input data (or ASCI], e.g. csv)
HSF support might come soon
pre-selection cuts on input data
event weights (negative weights for some methods)
various method for splitting training / test samples
k-fold cross-validation
support variable importance

hyper-parameter optimisations



TMVA Session

void TMVAnalysis( )

{
TFile* outputFile = TFile::Open( "TMVA.root", "RECREATE" );

TMVA::Factory *factory = new TMVA::Factory( "MVAnalysis", outputFile,"!V");

Create Factory

TFile *input = TFile::Open("tmva_example.root");

factory->AddVariable("varl+var2", 'F');
factory->AddVariable("varl-var2", 'F'); //factory->AddTarget("tarval", 'F');

Add variables/
targets

factory->AddSignalTree ( (TTree*)input->Get("TreeS"), 1.0 );
factory->AddBackgroundTree ( (TTree*)input->Get("TreeB"), 1.0 );
/[factory->AddRegressionTree ( (TTree*)input->Get("regTree"), 1.0 );
factory->PrepareTrainingAndTestTree( "", "",

"nTrain_Signal=200:nTrain Background=200:nTest Signal=200:nTest Background=200:!V");

Initialize Trees

factory->BookMethod( TMVA:: Types::kLikelihood, "Likelihood",
"I'V:!TransformOutput: Spline=2:NSmooth=5:NAvEvtPerBin=50" );
factory->BookMethod( TMVA:: Types::kMLP, "MLP",
"IV:NCycles=200:HiddenLayers=N+1,N:TestRate=5" ),

factory->TrainAllMethods(); // factory->TrainAllMethodsForRegression();
factory->TestAllMethods();

factory->Evaluate AllMethods();

outputFile->Close();

delete factory;

.. .. Wewill see better with a real example

Book MVA methods

Train, test and evaluate

[E. v. Toerne]
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TMVA Toy Example

4 Gaussian variable with linear correlations
{5E1 = V1 + V2, T2 = V1 — V2, T3 = V3, T4 = 714}

where {v1,..v4} are normal variables

[ TMVA Input Variable: vari+var2 |

® oa3f ]
2 3
T st 1z
0.25f 15
Z o2f 1s
: 1z
0.15F 3s
- 1=
is
0.1 -'é,
i 16
a2 3z
490
3 12
L 12
0 2

vari+var2

| TMVA Input Variable: var3 |

U/O-tlow (S,B): (0.0, 0.0)% / (0.2, 0.0)%

[ TMVA Input Variable: vari-var2 |

Background

04

Normalised
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[ TMVA Input Variable: vara |
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| Correlation Matrix (signal) |
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Rank : Variable : Separation
1:vard :0.606
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3 :var3 :0.173
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Pre-processing of the Input Variables

Example: decorrelation of variable before
training can be useful

05 T Sighal

Normalised [7]
o oo

can
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- . N
16
0?1% E 03
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L 1 1 1
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Note that in cases with non-Gaussian distributions and/or nonlinear correlations
decorrelation may do more harm than any good

Several others pre-processing available (see Users Guide)
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Available Preprocessing

This is the list of available pre-processing in TMVA
Normalization
Decorrelation (using Cholesky decomposition)
Principal Component Analysis
Uniformization

(Gaussianization
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TMVA GUI

< TMVA Plotting Macros (3=

(1a) Input Variables

(1b) Decorrelated Input Variables

(1c) PCA Input Vari

(2a) Input Variable Correlations (scatter profiles)

(2b) Decorrelated Input Variable Correlations (scatter profiles)

(2c) PCA-transformed Input Variable Correlations (scatter profiles)

(3) Input Variable Linear Correlation Coefficients

(4a) Cl Output D!

(4b) Ci Output DI for Training and Test Samples

(4c) Classifier Probability Distributions

(4d) Classifier Rarity Distributions

(Sa) Classifier Cut Efficiencies

| Correlation Matrix (signal) |

(5b) CI g vs Signal Efficiency (ROC curve)

(6) Likelil Distrif

(72) Network Architecture

(7b) Network Convergence Test

(8) Decision Trees

(9) PDFs of Classifiers

(10) Rule Ensemble Importance Plots

(11) Quit
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Rl 3
omus)

average no. of nodes before/after pruning: 4193 / 968 O i

At the end of training + test phase TMVA produces an

output file that can be examined with a special GUI
(TMVAGui)

TMVA overtraining check for classifier: BDT |
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Significance
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ROC Curve in TMVA

For example from GUI one can obtain a ROC curve

for each method trained and tested on an

independent data set

ROC Curve
Uiy,

8signal

1

| Background rejection versus Signal efficiency |

- 1
()
.&)—, 09
o
© 08 [
 —
=2
g, 0.7 nasssssassfoossessesessacforessassanteasionsecszsoveseechrasecssssasosed .... PO . U, N SO
3 :
© 0-6 o ST l ..... R SH— v., ....................... :
@ ——— HMatrix b
0.5 :,_ ....... mBDT ............................... .............................................................. !}
5 PDERS | ,
0.4 .:_ ....... YY) PTTTTTTTTTITITT | KNN ............................... , .....................................................................
03 i QUISGA b N
3 Frrse ikelihood
02:llllllllllllllillllillllilllllllllllllllllllllll
) 01 02 03 04 05 06 07 08 09 1
Signal efficiency

=» Comparison of several methods

L. Moneta

Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018



TMVA Regression GUI

A dedicated GUI exists for regression (TMVARegGui)
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Regression in TM VA

New Regression Features:

Loss Functions

Loss function sl
E —— TMVA_Least_Squares
HUber (defaUIt) 3000:_ —— TMVA_Absolute_Deviation
C = TMVA Huber
2500 _
» Least Squares :
.. 20 Higcher is
Absolute Deviation : 5
1500} better
» Custom Function o
5005—
c e b b bev b bev b Lo b

5 4 3 2 - 0 i 2 3 4 5
Predicted Value - True_Value

Important for regression performance
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Cross Validation in TM VA

lidation

TMVA supports k-fold cross-va

1

Background Rejectio
o
©
| T

o
[2)
L

k-fold cross-validation:
Dataset

’ Fold1 Fold2 Fold3 Fold4 Fold5 ., Foldk 04|

0.2—

Hyper-parameter tuning
find optimised parameters (BDT-SVM)
Providing support for parallel execution

multi-process / multi-threads and on a cluster
using Spark or MPI
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TMVA Interfaces

External tools are available as additional methods in TMVA and
they can be trained and evaluated as any other internal ones.

RMVA: Interface to Machine Learning methods in R
CSO, ngOOSt, RSNNS, 61071 Background rejection versus Signal efficiency

rp— E— AR

see http:/ /oproject.org/ RMVA § 0 E
PYMVA: Python Interface § oo \ ]
skikit-learn with RandomForest, e \

. 04— ~PyGTB -
Gradiend Tree Boost, Ada Boost) Wb rrhdanoost |
see http:/ /OpI'OjeCt.OI'g/PYMVA 0-20:‘ S R S R VI ‘:1

Signal efficiency

Keras (Theano + Tensorflow)
support model definition in Python

S€E https:/ /indico.cern.ch/event/565647 / contributions /2308668 / attachments /1345527 / 2028480/ 29Sep2016_IMIL,_keras.pdf

Input data are copied internally from TMVA to Numpy array
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Jupyter Integration

Improved Python API for
TMVA functions

Visualisation of BDT
and DNN

Enhanced output and plots
(e.g. ROC plots)

Improved interactivity
(e.g. pause/resume/stop of
training)

see example in SWAN gallery

https:/ /swan.web.cern.ch/content/machine-learning

New Python package for using TMVA in
Jupyter notebook (jsmva)

. f\. 3
sudec;nle_npyter I P [y] cd
- IPython

In [24]: factory.DrawDecisionTree(dataset

Pure Backg.
Pure Signal
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