

Machine Learning

Lorenzo Moneta CERN - EP-SFT Lorenzo.Moneta@cern.ch

LIP Data Science School / 12-14 March 2018

Outline

Lecture 1 (today)

- Introduction to Machine Learning
- Supervised Learning
- Linear Models
 - Regression
 - Classification
- Hypothesis Tests and ROC curve
- Overfittig and Regularization
- Cross-Validation
- Machine Learning Software
 - Introduction to ROOT/TMVA

Outline (2)

- Lecture 2:
 - Support Vector Machine (SVM)
 - Decision Trees
- Lecture 3:
 - Introduction to Neural Networks
 - Deep Learning

Ο

Vaximum.

X₁

margin

Г

References

Lots of materials presented taken from these lectures:

- *M. Kagan*: <u>CERN Academic Training Lectures</u> (2017)
- S. Gleyzer: <u>TAE 2017 Lectures</u>
- *A. Rogozhnikov*: Lecture at Yandex summer school of Machine Learning in HEP (2016)

Books:

- Elements of Statistical Learning (*Friedman et al...*)
- Pattern Recognition and Machine learning (Bishop)

What is Machine Learning?

- Field of study that gives computer the ability to learn without being explicitly programmed (Arthur Samuel, 1959)
- Better definition (T. Mitchell, 1998)
 - Study of algorithms that improve their performance **P** for a given task **T** with more experience **E**

• Example:

• Task: Identify Higgs boson, faces in pictures, etc...

Where is Used ?

- Natural Language Processing
- Speech and handwriting recognition
- Object and image recognition
- Fraud detection
- Financial marker analysis
- Search engines
- Spam and virus detection
- Medical diagnosis
- Robotics control
- Automation: e.g. self-driving cars
- Advertising (recommender systems)

Growing very fast !

Facial recognition

Autonomous ("selfdriving") vehicles

Examples

Machine Learning in HEP

- In analysis and reconstruction
 - Classifying signal from background events
 - Reconstructing particles and improving energy/mass resolution
 - Particle identification
 - Energy calibration
- In the trigger and Data Acquisition
 - Quickly identifying complex final states
 - Data quality monitoring
- In computing
 - Estimate dataset popularity
 - Optimisation of resources

Machine Learning in HEP

Classification

- Particle Identification
- Pattern Recognition (tracks)
- Searches for new Physics

Regression

- Function Estimation
 - e.g. estimate better particle energy

Example: Higgs Discovery

- Identification of particles
- Identification of interactions
- Energy regression
- Event selection

Improvement in analysis from all 4 areas

Mathematical Modeling

- Key element in machine learning is a mathematical model
 - mathematical characterisation of system(s) of interest, typically via random variable
 - Chosen model depends on the task and on the available data

Mathematical Modeling

Key element is a mathematical model

Learning

- Estimate statistical model from the data
- Prediction and Inference

 use the statistical model to make predictions on new data points and infer properties of system(s)

Mathematical Models

- Parametric Models
 - described with a fixed set of parameters

- independent of data set sizes
- Non-parametric models
 - do not have a fixed set of parameters
 - complexity grows with data size

Binary kNN Classification (k=1)

Generative and Discriminative Models

Generative model

- Estimate probability density functions p(x,y)
 - estimate p(x | y) and prior p(y) and then using Bayesian theorem
 - $p(y | x) \propto p(x | y)p(y)$
- Discriminative model
 - Model directly the p(y | x)
- Majority of methods (e.g. logistic regression, neural networks) are discriminative models

Machine Learning Tasks

- Classification
- Regression
- Clustering

Dimensionality Reduction

Supervised Learning

- Given N examples (events in HEP) with features (Training Data)
 - { $\mathbf{x_i} \in \boldsymbol{\mathcal{X}}$ } and targets { $y_i \in \boldsymbol{\mathcal{Y}}$ }
- Learn function mapping y = f(x)
 - **x**_i is typically a n-dimensional vector (number of features)
 - X is a matrix (number of events × number of features)
 - y_i is instead a scalar

Supervised Learning: Classification

- { $\mathbf{x}_i \in \mathcal{X}$ } and targets { $y_i \in \mathcal{Y}$ }
- Learn function mapping y = f(x)

- **Classification** : *Y* are a finite set of labels
 - binary classification *Y* = {0,1}
 e.g. Higgs event vs Background events
 multi-class classification *Y* = {c₁, c₂,...,c_n}

Supervised Learning: Regression

- { $\mathbf{x}_i \in \mathcal{X}$ } and targets { $y_i \in \mathcal{Y}$ }
- Learn function mapping y = f(x)
 Regression: *Y* are Real Numbers

Unsupervised Learning

- Given some data $D = \{x_i\}$, but no labels
- Find possible structure in the data
 - Clustering:
 - partition the data into groups $\mathbf{D} = \{ \mathbf{D}_1 \cup \mathbf{D}_2 \cup \mathbf{D}_3 \dots \cup \mathbf{D}_n \}$
 - Dimensionality reduction:
 - find a low dimensional
 representation of the data
 with a mapping Z = h(X)

Example: Clustering

- Astronomical analysis:
 - grouping of galaxies
- Genetic analysis in biology
- Market Segmentation
- Organization of computing clusters
- Social network analysis
- Grouping of information (e.g. Google news)

Andrew Ng

Classification and Regression Tasks

Classification - How to find the best decision boundary ?

Regression - How to determine the correct model ?

Supervised Learning

How does it works?

- Choose a function with parameters
 - $\mathcal{F} = \{ f(\mathbf{x}; \mathbf{w}) \}$
 - with optional constraint $\Omega(\mathbf{w})$
- Design a Loss function measuring the cost of choosing badly

$$L(\mathbf{w}, \mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(\mathbf{x}_i, \mathbf{w}))$$

• Find best values of the parameters **w** that minimize the loss function L(**w**, **x**)

• Estimate final performance on an independent data set

Loss Function Minimization

Minimization of Loss Function

- Use a labeled training-set to compute loss function
- Iterative optimisation procedure (e.g. gradient descent) to find parameter values, i.e. *f*(*x*; *w*), which gives the minimum of the Loss function

$$\arg\min_{\mathbf{w}} L(\mathbf{w}, \mathbf{x}) = \arg\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(\mathbf{x}_i, \mathbf{w})) + \lambda \Omega(\mathbf{w})$$

λΩ(w) is a constraint term on the parameters w
regularisation, penalising certain values of w

Example: Linear Regression

- Loss Function often used for regression
 - Square Error Loss

$$L(f(\mathbf{x};\mathbf{w}),y) = (f(\mathbf{x};\mathbf{w}) - y)^2$$

Measurement XYZ

Linear Regression :
assume a linear model

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$$

• Find **w**^{*} minimum of L(**w**)

$L(\mathbf{w}) = \frac{1}{2} \sum (y_i - f(\mathbf{x}_i; \mathbf{w}))^2$

Arb.Units

60

50

40

Least Square Regression

• Find minimum of L(w)

Least Square Loss function

Used also for parameter estimation
 i.e. Least square fit (X² fit)

i=1

10

Lab. Lesson 1

6

Maximum

Deviation

10 lenght [cm]

8

L. Moneta

Measurement XYZ

Parameter Estimation

Model process using likelihood function of the observed data

$$\mathcal{L}(\mathbf{w}) = P(\mathbf{y}|\mathbf{x}; \mathbf{w}) = \prod_{i} p(y_i|\mathbf{x}_i; \mathbf{w})$$

- Parameter Estimation: find parameters that maximise likelihood function
 - Equivalent: minimise log-likelihood

$$\mathbf{w}^* = \arg\max_w \mathcal{L}(\mathbf{w}) = \arg\min_w -\log \mathcal{L}$$

Parameter Estimation: Linear model

- Assume: $y_i = f(x_i) + e_i$ with $f(x) = wx_i$
- With Normal random error e_i ~ N(0, σ) p(e_i) ∝ exp(-e_i²/(2σ²)
 the model for y_i is described by a p(y_i|x_i,w) ∝ exp((wx_i-y_i)²/(2σ²)
- The likelihood function is then

$$\begin{aligned} \mathcal{L}(w) &= p(\mathbf{y}|\mathbf{x}, w) = \prod_{i} p(y_i|x_i; w) \\ \rightarrow -\log \mathcal{L}(w) &= \sum_{i}^{i} (y_i - w_i x_i)^2 \end{aligned}$$

- The negative log-likelihood function is equivalent to the least square loss
- Probabilistic interpretation for our simple regression machine learning model

Measurement XY7

Classification

- Want to learn a function to separate different class of events.
 - Problem is to find best decision boundary

Linear Decision Boundary

Predict class 0 if h(x) < 0 otherwise class 1
 if h(x) > 0

• distance from boundary = $h(\mathbf{x}) / ||\mathbf{w}||$

Logistic Regression

• Linear discriminant

$$h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$$

• Use probability that example **x** is in a given class using the sigmoid function

$$p(y = 1 | \mathbf{x}) \equiv p_i = \frac{1}{1 + e^{-h(\mathbf{x};\mathbf{w})}} = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

further from the boundary, more certain about class

Logistic Regression

- Probabilistic interpretation
- 2 classes classification: Bernoulli process

$$p(y_i|x_i) = (p_i)^{y_i} (1 - p_i)^{1 - y_i} \quad y_i = \{0, 1\}$$

• Negative Log-Likelihood is then

$$-\ln \mathcal{L} = -\sum_{i} (y_i \ln p_i + (1 - y_i) \ln(1 - p_i))$$

Binary Cross Entropy Loss function

Binary Cross Entropy Function

$$L(\mathbf{w}) = -\sum_{i} (y_i \ln p_i + (1 - y_i) \ln(1 - p_i))$$

Logistic Regression

- Find the values of **w** minimising the crossentropy loss function
 - $\mathbf{w}^* = \arg\min_{\mathbf{w}} -\ln L(\mathbf{w})$
- Use iterative algorithm to find optimal value
 w* (e.g. gradient descent)

Gradient Descent

- Minimize Loss function by repeated gradient steps
 - Compute gradient w.r.t. parameters:

- Update parameters
$$\mathbf{w}' \leftarrow \mathbf{w} - \eta \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$$

 $-\eta$ is called the learning rate, controls how big of a gradient step to take

Many variants exists especially in case of deep neural network training

 $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$

Why Sigmoid function?

• If we use probabilistic theory and Bayes statistics, the posterior p(y=1 | x) :

$$p(y = 1|x) = \frac{p(x|y = 1)p(y = 1)}{p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)}$$

• Then by using
$$z = \ln \frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)}$$

$$p(y = 1|x) = \frac{1}{1 + e^{-z}}$$

Which hypothesis is the most consistent with the data we have observed ?

Hypothesis Test

- H₀: null hypothesis
 - the hypothesis we want to reject
 - e.g. the data contains only background
- **H**₁: alternative hypothesis
 - e.g. the data consists of signal + background events
- Critical region:
 - regions of the test statistics defining the hypothesis rejection
- α : significance level (Type 1 error)
 - probability to reject H₀ when is true (false positive)
- *β*: Type 2 error
 - probability to accept H₀ when is false (false negative)
 - 1- β : power of the test

Classification as Hypothesis Test

Hypothesis Test

	State of Nature		
Decision we make	H _o is true	H _o is false	
Accept H _o	ok	Type II error	
		probability β	
Reject H _o	Type I error	ok	
	probability α		

ROC Curve

ROC Curve

Receiver Operating Characteristic (ROC) Curve classifying quarks vs. gluons

ROC Curve

Sensitivity and Specificity

The Truth

Fes Sca	st (Has the disease	Does not have the disea	• _	
	pre: Positive	True Positives (TP) a	False Positives (FP) b	PPV = TP TP + FP	
	Negative	c False Negatives (FN)	d True Negatives (TN)	NPV = TN + FN	
		Sensitivity TP TP + FN	Specificity Sen TN TN + FP	nsitivity: • Signal efficiency • True Positive rate	
	0	r, — a+c	dSpo d+b	ecificity: • 1 Background efficienc • True Negative rate	

Purity

- Purity = Number of signal Events passing selection / Total number of events passing the selection
 - Purity = True Positive / (True Positive + False Positive)
 - important value but dependent on total number of Signal/ Background events)
- Optimize selection depending on analysis
 - e.g. $S/\sqrt{(S+B)}$ or expected Asimov significance for discovery

Significance

20

15

10

5

Neyman-Pearson Lemma

The likelihood ratio λ(x) used as selection criteria, gives for each selection efficiency α the best possible rejection of H₀ in favour of H₁ (background rejection)

$$\lambda(x) = \frac{L(x|H_0)}{L(x|H_1)} \le c$$

where $P(\lambda(X) \le c | H_0) = \alpha$

The cut value c defines the rejection region of the null hypothesis H₀

Polyonial Regression

TMultiGraph of 3 TGraphErrors

What is the correct model?

$$f(x|\mathbf{w}) = w_0 + w_1 x \qquad f(x|\mathbf{w}) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 \qquad f(x|\mathbf{w}) = w_0 + w_1 x + \dots + w_9 x^9$$

Under fitting Large Bias

model does not reproduce well the data

Over fitting Large Variance

model reproduce the training data too well

Overfitting

- Model reproduce too well training data
 - In the extreme limit it will follow exactly the data $(L(w) \approx 0)$
- It might fail miserably on an independent data set (a validation/test data set)

Overfitting

 Same happens also for classification (e.g. logistic regression)

In case of overfitting decision boundary follows the data

Bias-Variance Trade Off

- Simple model under-fit: it will deviate from data (high bias) but not influenced by its peculiarity (low variance)
- Complex model over-fit: it will not deviate from data (low bias) but it will be very sensitive to the data (high variance)
 - **Bias** : systematic error of the model
 - Variance: sensitivity of prediction
- If model is more complex
 - will capture more data points → lower bias
 - will move more to capture the data → higher variance

Bias - Variance Trade Off

Generalization Error

Regularization

- Method to find optimal model is to add a parameter constraint in the loss function
 - aim to trade some bias to reduce variance
- Modify loss function (e.g. for linear regression):

$$L(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2 + \lambda \Omega(\mathbf{w})$$

L2 norm Ω(w) = ||w||² = ∑ w_i²
equivalent to Gaussian prior on the weights
L1 norm Ω(w) = ||w|| = ∑ |w_i|
equivalent to Laplace prior on the weights shore 12-14 March 2018

53

• L2 keeps weights small, L1 keeps weights sparse!

[M. Kagan]

Data Science School in (Astro) Particle Physics, Lisbon, 12-14 March 2018 55

Hyper-parameter Optimisation

- How to find optimal regularisation parameter ?
- We need to perform an hyper-parameter optimisation to find the best total error
- Split the data in 3 samples:
 - Training sample
 - used to train and fit the model
 - Find best parameter values
 - Validation sample
 - used to check the model and measure error as function of hyper-parameter
 - find best hyper-parameter values
 - Test Sample
 - Final check of the model when all parameters have been fixed
 - Need to be independent than validation since we have tune the model on the validation sample

Training Set	Validation Set	Test Set
--------------	-------------------	----------

Hyper-Parameter Optimization

[M. Kagan]

CrossValidation

- Divide data randomly in k-folds
 - Use (k-1) folds for training and 1 fold for validation
 - Repeat changing the validation set
- Use average estimate performances on the k-folds
- Can estimate variance on the performance
- Especially useful when data set is small

Machine Learning Software ROOT/TMVA

ROOT

ROOT is a software toolkit which provides building blocks for:

- Data processing
- Data analysis
- Data visualisation
- Data storage

ROOT is written mainly in C++ (C++11 standard)

Bindings for Python are provided.

Adopted in High Energy Physics and other sciences (but also industry)

- ~250 PetaBytes of data in ROOT format on the LHC Computing Grid
- Fits and parameters' estimations for discoveries (e.g. the Higgs)
- Thousands of ROOT plots in scientific publications

TMVA

- ROOT Machine Learning tools are provided in the package TMVA (Toolkit for MultiVariate Analysis)
- Provides a set of algorithms for standard HEP usage
- Used in LHC experiment production and in several analysis (e.g. Higgs studies)
- Easy interface for beginners, powerful for experts
- Several active contributors and several features added recently (e.g. deep learning)

- TMVA is not only a collection of multi-variate methods. It is a
 - common interface to different methods
 - common interface for classification and regression
 - easy training and testing of different methods on the same dataset
 - consistent evaluation and comparison
 - same data pre-processing
 - several tools provided for pre-processing
 - embedded in ROOT
 - complete and understandable users guide

TMVA Methods

The available methods are:

- Rectangular cut optimisation
- Projective likelihood estimation (PDE approach)
- Multidimensional probability density estimation (PDE rangesearch approach)
- Multidimensional k-nearest neighbour classifier
- Linear discriminant analysis (H-Matrix and Fisher discriminants)
- Function discriminant analysis (FDA)
- Artificial neural networks (various implementations)
- Boosted/Bagged decision trees
- Predictive learning via rule ensembles (RuleFit)
- Support Vector Machine (SVM)

New Features

New features added since 2016:

• Deep Learning

- support for parallel training on CPU and GPU (with CUDA and OpenCL)
- Cross Validation and Hyper-parameter optimisation
- Improved loss functions for regression
- Interactive training and visualization for Jupyter notebooks
- new pre-processing features (variance threshold)

Using TMVA

Workflow in TMVA

- Reading input data
- Select input features and preprocessing
- Training
 - find optimal classification or regression parameters using data with known labels (e.g. signal and background MC events)

Testing

- evaluate performance of the classifier in an independent test sample
- compare different methods

Application

• apply classifier / regressor to real data where labels are not known

TMVA Custumizations and Features

TMVA supports:

- ROOT Tree input data (or ASCII, e.g. csv)
 - HSF support might come soon
- pre-selection cuts on input data
- event weights (negative weights for some methods)
- various method for splitting training/test samples
- k-fold cross-validation
- support variable importance
- hyper-parameter optimisations

TMVA Session

void TMVAnalysis()	
TFile* outputFile = TFile::Open("TMVA.root", "RECREATE");	
TMVA::Factory *factory = new TMVA::Factory("MVAnalysis", outputFile,"!V");	Create Factory
TFile *input = TFile::Open("tmva_example.root");	
factory->AddVariable("var1+var2", 'F'); factory->AddVariable("var1-var2", 'F'); //factory->AddTarget("tarval", 'F');	Add variables/ targets
factory->AddSignalTree ((TTree*)input->Get("TreeS"), 1.0); factory->AddBackgroundTree ((TTree*)input->Get("TreeB"), 1.0); //factory->AddRegressionTree ((TTree*)input->Get("regTree"), 1.0); factory->PrepareTrainingAndTestTree("", "", "nTrain_Signal=200:nTrain_Background=200:nTest_Signal=200:nTest_Background=200:!V"	Initialize Trees
factory->BookMethod(TMVA::Types::kLikelihood, "Likelihood", "!V:!TransformOutput:Spline=2:NSmooth=5:NAvEvtPerBin=50"); factory->BookMethod(TMVA::Types::kMLP, "MLP", "!V:NCycles=200:HiddenLayers=N+1,N:TestRate=5");	Book MVA methods
factory->TrainAllMethods(); // factory->TrainAllMethodsForRegression(); factory->TestAllMethods(); factory->EvaluateAllMethods();	n, test and evaluate
outputFile->Close(); delete factory; } We will see better with a real example	e
(e.g. TMVAClassification.C.tutorial)	[E. v. Toerne] Particle Physics, Lisbon, 12-14 March 2018

L. Moneta

TMVA Toy Example

4 Gaussian variable with linear correlations $\{x_1 = v_1 + v_2, x_2 = v_1 - v_2, x_3 = v_3, x_4 = v_4\}$ where $\{v_1, ..., v_4\}$ are normal variables

Pre-processing of the Input Variables

• Example: decorrelation of variable before training can be useful

Several others pre-processing available (see Users Guide)

Available Preprocessing

This is the list of available pre-processing in TMVA

- Normalization
- Decorrelation (using Cholesky decomposition)
- Principal Component Analysis
- Uniformization
- Gaussianization

TMVA GUI

At the end of training + test phase TMVA produces an output file that can be examined with a special GUI (TMVAGui)

ROC Curve in TMVA

For example from GUI one can obtain a ROC curve for each method trained and tested on an independent data set

→ Comparison of several methods
TMVA Regression GUI A dedicated GUI exists for regression (TMVARegGui)

73

Regression in TMVA

- New Regression Features:
 - Loss function
 - Huber (default)
 - Least Squares
 - Absolute Deviation
 - Custom Function

Important for regression performance

Cross Validation in TMVA

TMVA supports k-fold cross-validation

- Hyper-parameter tuning
 - find optimised parameters (BDT-SVM)
- Providing support for parallel execution
 - multi-process/multi-threads and on a cluster using Spark or MPI

Signal Efficiency

TMVA Interfaces

External tools are available as additional methods in TMVA and they can be trained and evaluated as any other internal ones.

- **RMVA**: Interface to Machine Learning methods in R
 - c50, xgboost, RSNNS, e1071
 - see <u>http://oproject.org/RMVA</u>
- **PYMVA**: Python Interface
 - **skikit-learn** with RandomForest, Gradiend Tree Boost, Ada Boost)
 - see <u>http://oproject.org/PYMVA</u>
 - Keras (Theano + Tensorflow)
 - support model definition in Python

- See https://indico.cern.ch/event/565647/contributions/2308668/attachments/1345527/2028480/29Sep2016_IML_keras.pdf
- Input data are copied internally from TMVA to Numpy array

Jupyter Integration

New Python package for using TMVA in Jupyter notebook (jsmva)

- Improved Python API for TMVA functions
- Visualisation of BDT and DNN
- Enhanced output and plots (e.g. ROC plots)
- Improved interactivity (e.g. pause/resume/stop of training)
- see example in SWAN gallery https://swan.web.cern.ch/content/machine-learning

