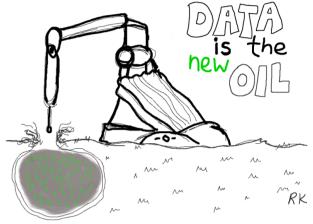
Big Data Science for Recommendation Systems

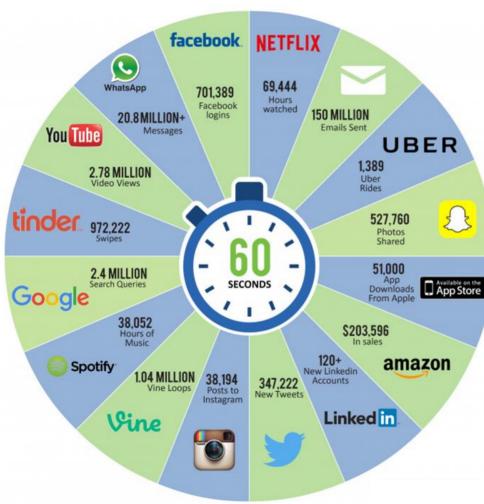


Miguel Costa

Computer Science Researcher, Lead Data Scientist @ Vodafone

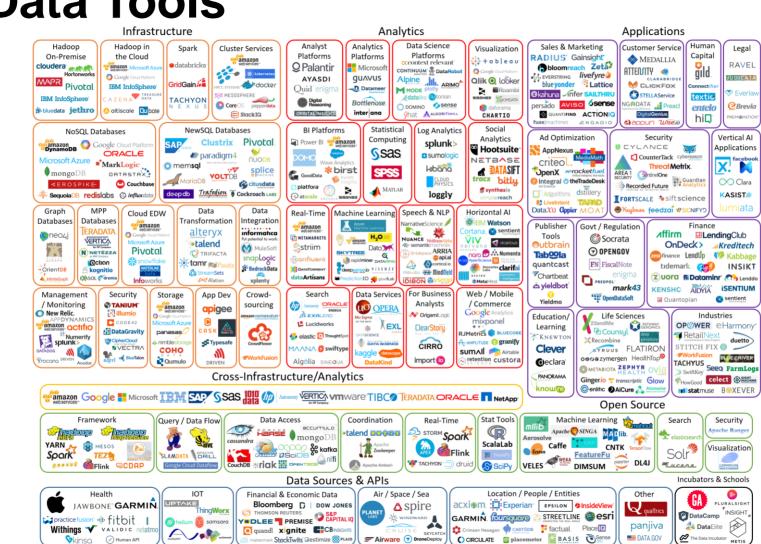
Data Science in (Astro)Particle Physics and the bridge to industry LIP - Laboratory of Instrumentation and Experimental Particle Physics March 15, 2018

Big Data



"Big data is a term for data sets that are so large or complex that **traditional data processing applications are inadequate** to deal with them." - Wikipedia

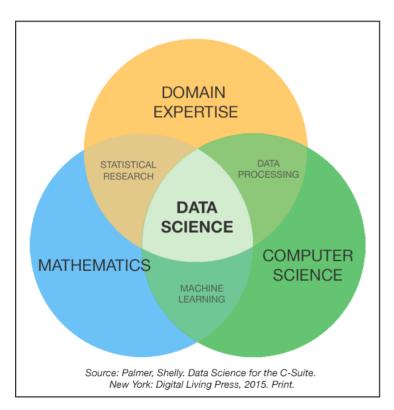
Volume Data Size Data Complexity Lelocity Data Sources



Big Data Tools

What is Data Science?

It is an interdisciplinary field about processes and systems to **extract knowledge or insights** from data in various forms ... - *Wikipedia*



- Discovering what we don't know from data
- Obtaining predictive and actionable insights from data
- Creating data products that have business impact
- Communicating relevant business stories from data
- Building confidence in decisions that drive business value based on data

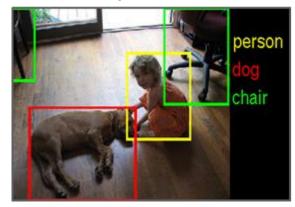
Big Data + Data Science = Big Data Science

Search engines

bing YAHOO! Google Recommendation systems

Personal assistants

Computer Vision



Speech translators

Beating humans ...

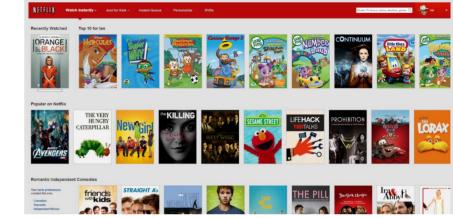
Examples of Recommendation Systems

amazon.com

Recommended for You

Amazon.com has new recommendations for you based on items you purchased or told us you own.

35% of sales come from recommendations



2/3 of the movies watched are recommended

	Search and browse 4,500 news sources			
		archive search Advanced news search Blog search		
Top Stories	Top Stories U.S. Co	Auto-generated 18 minutes ago		
World	US Mortgage Foreclosures Rise as Owners `Give Up'			
U.S.		Personalize this page		
Business	(Update3)	US Household Worth Fell for First Time Since 2002 (Update1) Bloomberg - all 208 news articles » Democrats' Dean argues against new Florida, Michigan primartes		
	By Kathleen M. Howley March 6 (Bloomberg) US mortgage foreclosures			
Elections	rose to an all-time high at the end of 2007 as borrowers with			
Sci/Tech	adjustable-rate loans walked away from properties before their payments			
Entertainment	increased, the Mortgage Bankers Association said			
Sports	Mortgage Defaults Reach a New High New York Times	Los Angeles Times - <u>all 540 news articles »</u>		
	MBA: US foreclosures at record high United Press International - The Associated Press - Reuters - AFP	Apple Opens Up iPhone		
Health	all 407 news articles »	Wall Street Journal - all 240 news articles »		
Most Popular	MI TOT HONO MILITICO -	Send In Your Well Wishes For Patrick Swayze		
	Clinton Turns Ohio, Texas Victories Into \$4	Access Hollywood - all 1,251 news articles »		
Mews Alerts	*	Packers would have struggled with Rodgers at QB		
	Million (Update1)	FOXSports.com - all 2,578 news articles »		

38% more clicks due to recommendations

Recommendation Systems for Video Content (& other items)

Problem

- Information overflow
 - too many video contents from which to choose
 - too much time exploring video contents

(thousands of programs broadcast in hundreds of TV channels, plus thousands of movies & series on VOD)

If a typical subscriber doesn't find something to watch in about **60 to 90 seconds**, they could lose interest and move on to something else.

Source: The Netflix Recommender System: Algorithms, Business Value, and Innovation, 2016

- Impact
 - dissatisfaction
 - change to other systems with recommendations (e.g. Netflix, Youtube)
 - less visualization time
 - less revenue
 - churn

Solution Approach (5 steps)

- 1. Extraction of implicit or explicit feedback for each pair <user, content>
 - Get preferences of what users like to watch
- 2. Feature engineering
 - Get signals that quantify how much a user likes a TV content
- 3. Creation of a large-scale dataset for learning & evaluation
 - Compile all examples with signals and preferences
- 4. Creation of a recommendation model
 - Learn a model using the large-scale dataset
- 5. Evaluation (offline & online)
 - Quantify how good are the recommendations provided by the model

Extraction of explicit & implicit feedback (get user preferences)

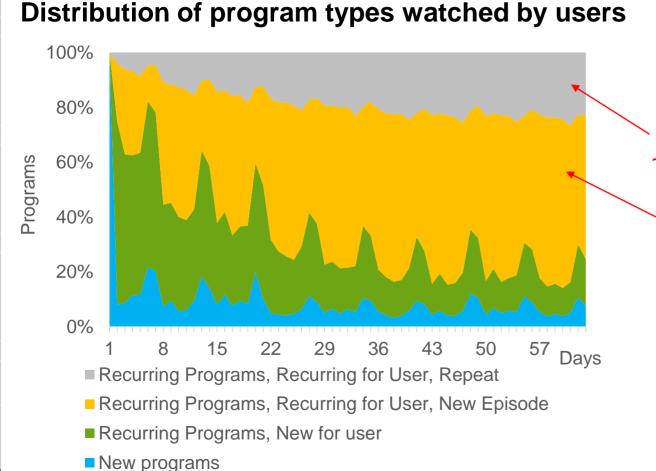
We assume users like/dislike a TV content if they:

- explicitly rate the content
- implicitly watch the content more than x% or more than y minutes
- implicitly record the content
- implicitly rewind and watch the content from the beginning

Explicit feedback provides more trustable data. Implicit feedback provides much more data.

Dislike

Feature engineering: business context



Understand how users watch TV contents and exploit this knowledge

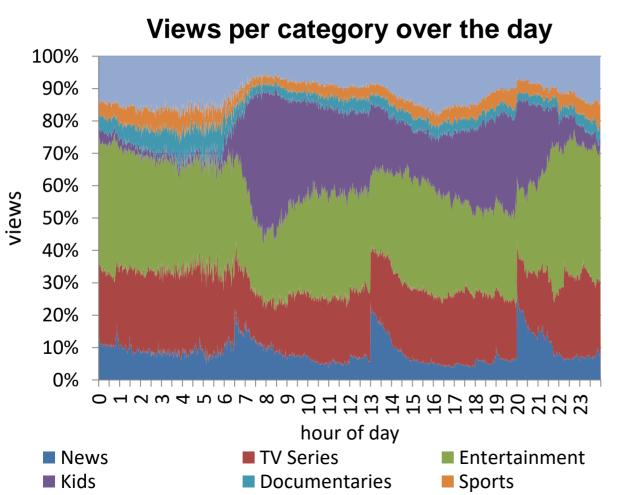
Step 2

~20% of watched episodes are repeated. These are mostly kids programs.

most users watch new episodes of programs already seen

The **number of episodes** of a program already seen is a strong signal of what the user will see

Feature engineering: business context



users watch different categories in different hours

Step 2

The **hour of day** is a strong signal of what the user will see

Feature engineering: content-based filtering

Die Hard 2h11min | Action, Thriller | 1988 Director: John McTiernan Writers: Roderick Thorp (novel), Jeb Stuart (screenplay) Stars: Bruce Willis, Alan Rickman, Bonnie Bedelia

Recommend contents similar to the contents that the user liked in the past

The Last Boy Scout 1h45min | Action, Thriller | 1991 Director: Tony Scott Writers: Shane Black (story), Greg Hicks (story) Stars: Bruce Willis, Damon Wayans, Chelsea Field

Metadata similarity: Close years Same category Same star

Feature engineering: content-based filtering

Textual similarity:

Sentence 1: William Wallace begins a revolt against King Edward I of England. Sentence 2: Braveheart fought against Edward Longshanks.

$$\operatorname{Jaccard}(\mathcal{S}_1, \mathcal{S}_2) = \frac{|\mathcal{S}_1 \cap \mathcal{S}_2|}{|\mathcal{S}_1 \cup \mathcal{S}_2|} \qquad \operatorname{tfidf}_{i,j} = \operatorname{tf}_{i,j} \times \log\left(\frac{\mathbf{N}}{\mathbf{df}_i}\right) \quad \operatorname{tf}_{i,j} = \text{\# of occurences of i in j}_{\mathsf{N} = \text{\# of sentences with i}} \\ \underset{\mathsf{N} = \text{\# sentences}}{\overset{\mathsf{N}}{\mathsf{H}_i}}$$

Semantic similarity: King Edward I = Edward Longshanks William Wallace = Braveheart

Step 2

Feature engineering: collaborative filtering

User-based: recommends contents that similar users liked

• People who agreed in the past are likely to agree again

Item-based: recommends similar contents that the user liked

• A user is likely to have the same opinion for similar items

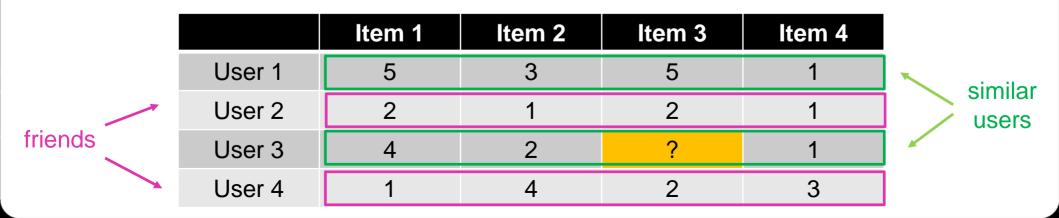
		Item 1	ltem 2	Item 3	ltem 4	
How to measure similarity?	User 1	5	3	5	1	
	User 2	2	1	2	1	similar users
	User 3	4	2	?	1	
	User 4	1	4	2	3	
			similar items		•	

Step 2

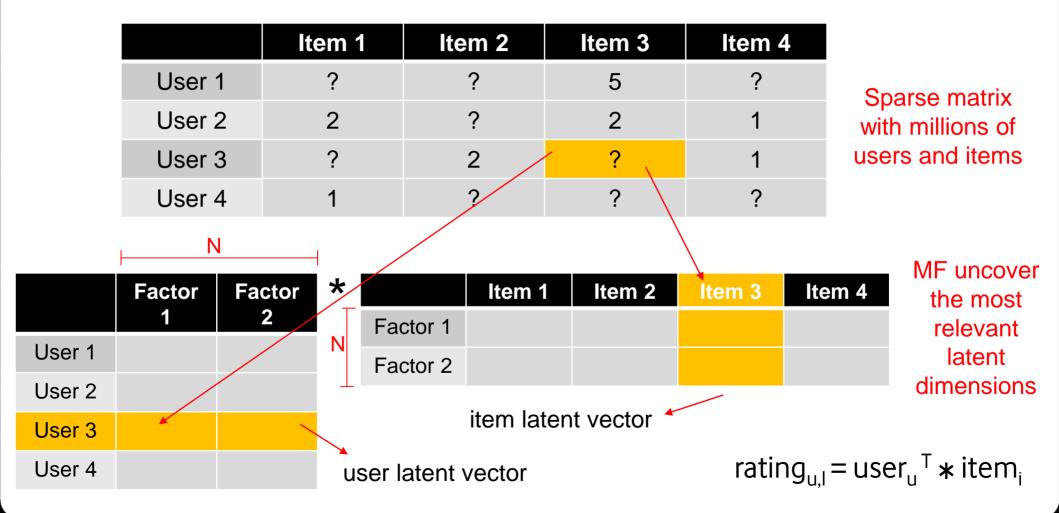
Feature engineering: social context

We are likely to share interests and preferences with our friends (homophily)

& Users can be easily influenced by the friends they trust



Feature engineering: matrix factorization (MF)



Feature engineering: latent factors example

Step 2

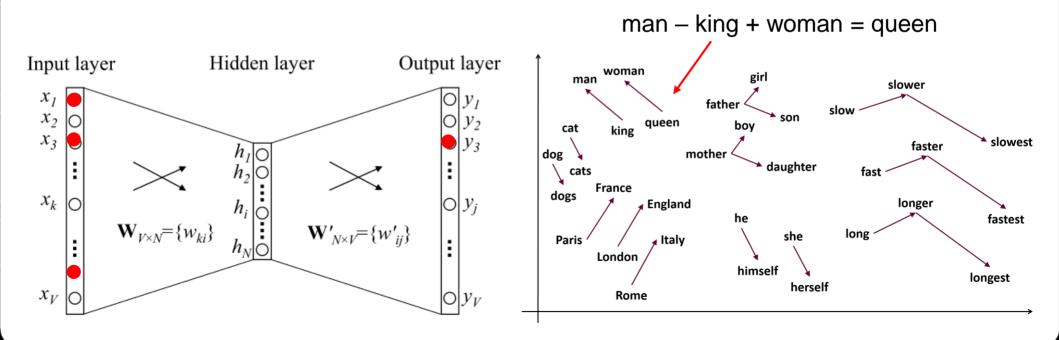
Action

(factor 1)

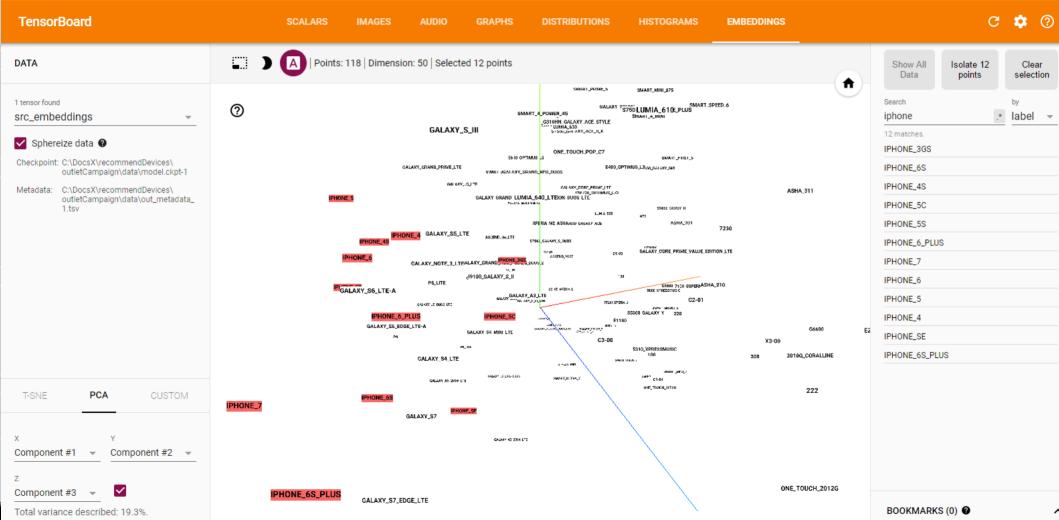
The biggest and funniest film of the year' TELLA

Step 2 Feature engineering: word2vec & item2vec

The context (e.g. adjacent words/items) is used to create **embeddings** that can be used to measure similarity and infer semantic relations. Two algorithms: Continous Bag of Words (CBOW) & Skip-gram



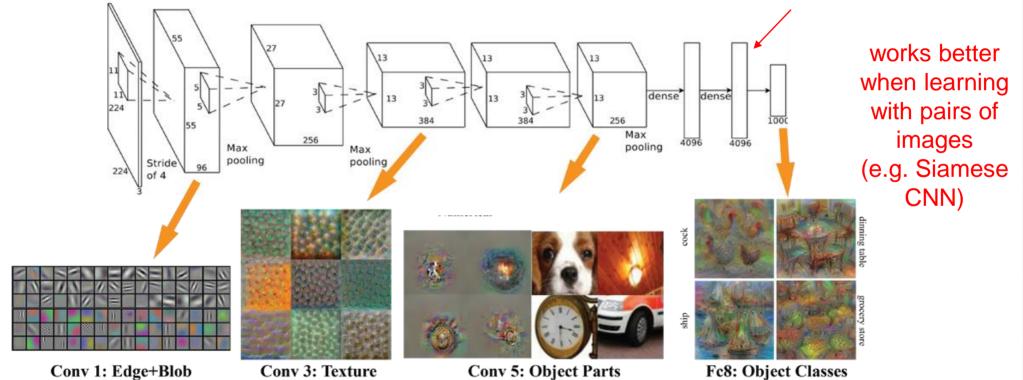
Feature engineering: item2vec example



Feature engineering: deep learning (CNN)

use one off-the-shelf model (e.g. ResNet-50 pre-trained on ImageNet dataset) and retrain the last-layers with your examples

use this fully connected (dense) layer to extract image embeddings



AlexNet network learned from ImageNet dataset and visualized with mNeuron.

Step 2 Feature engineering: CNN embeddings example

Women's clothing embeddings extracted from AlexNet network & visualized with t-SNE in 2D

Creation of a large-scale dataset

User ID	Item ID	Feature 1	Feature 2	Feature 3	Feature 4	 Label
1012321	8643244	0.5	0.56	55	4544	LIKE
1232335	1344690	0.3	0.23	3		DISLIKE
1023877	0456431	0.1		23	345	DISLIKE
2234432	9343990	1.0	0.0	45	0	LIKE

Do not forget to:

- "clean" the data
- handle missing values & outliers
- normalize/standardize data
- anonymize data

Feature domains:

Business Context	Content-based filtering
Social Context	Collaborative filtering
Demographics	Others

Step 3

Some datasets have millions of users and items with thousands of features.

Conclusions

Big data science is revolutionizing the world. Join the revolution. Recommendations are used in numerous systems to improve business.

To build a recommendation system you should follow these steps:

- 1. Extraction of implicit or explicit feedback for each pair <user, item>
- 2. Feature engineering
- 3. Creation of a (large-scale) dataset for learning & evaluation
- 4. Learning a recommendation model
- 5. Evaluation

Questions?

Thank you.

We are looking for interns & collaborations.

miguel.costa2@vodafone.com

http://www.vodafone.com/content/bigdata/