

First Joint Workshop IGFAE / LIP Braga, May 4th 2018

Small-x Physics

Néstor Armesto Departamento de Física de Partículas and IGFAE Universidade de Santiago de Compostela

nestor.armesto@usc.es

Contents:

I. Motivation.

- 2.A few recent topics:
 - → Nuclear parton densities.
 - → Particle correlations.
 - → NLO calculations.

3. Implication in future experimental programmes.

Note: I am limiting the presentation to activities at IGFAE (in collaboration with LIP when applicable).

N.Armesto, 04.05.2018 - Small-x Physics.

From pp to AA:

• Several (QGPpointing) observables show a (smooth) transition between pp, pPb and PbPb - the only exception being jet quenching in pPb.

			602.09138		
Observable or effect	PbPb	pPb (at high mult.)	pp (at high mult.)	Refs.	
Low $p_{\rm T}$ spectra ("radial flow")	yes	yes	yes	[37-42]	
Intermed. $p_{\rm T}$ ("recombination")	yes	yes	yes	[41–47]	
Particle ratios	GC level	GC level except Ω	GC level except Ω	[48–51]	
Statistical model	$\gamma_s^{\rm GC} = 1,10-30\%$	$\gamma_s^{ m GC} pprox 1, 20-40\%$	$\gamma_s^{\rm C} < 1, 20-40\%^2$	[52]	
HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N_{\rm ch}}))$	$R_{\rm out}/R_{\rm side} \approx 1^{-3}$	$R_{\rm out}/R_{\rm side} \stackrel{<}{_{\sim}} 1$	$R_{\rm out}/R_{\rm side} \stackrel{<}{_{\sim}} 1$	[53–59]	
Azimuthal anisotropy (v_n)	$v_1 - v_7$	$v_1 - v_5$	v_2, v_3	[25-27]	
(from two part. correlations)				[60-67]	
Characteristic mass dependence	v_2, v_3 ⁴	v_2, v_3	<i>v</i> ₂	[67–73]	
Directed flow (from spectators)	yes	no	no	[74]	
Higher order cumulants	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6 \approx 8 \approx LYZ$ "	"4 ≈ 6" ⁵	[28, 29, 67]	
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics		[75–83]	
Weak η dependence	yes	yes	not measured	[83–90]	
Factorization breaking	yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured	[91]	
Event-by-event v_n distributions	n = 2 - 4	not measured	not measured	[92]	
Event plane and v_n correlations	yes	not measured	not measured	[93–95]	
Direct photons at low $p_{\rm T}$	yes	not measured	not measured 6	[96]	
Jet quenching	yes	not observed 7	not measured 8	[97–105]	
Heavy flavor anisotropy	yes	hint ⁹	not measured	[106–109]	
Quarkonia	J/ψ ↑, Υ ↓	suppressed	not measured 8	[110–116]	

1602.07240

lisation unc. not shown

The ridge:

 Particle correlations in pp and pPb at the LHC show features that in AA are attributed to final state interactions describable by hydrodynamics and interpreted as a signal of equilibration.

• Hydro works, although it demands non-trivial inputs, and some limitations in pp.

 $\langle \langle \operatorname{corr}_{n} \{2\} \rangle \rangle \equiv \langle \langle e^{in(\phi_{1}-\phi_{2})} \rangle ,$ $\langle \langle \operatorname{corr}_{n} \{4\} \rangle \rangle \equiv \langle \langle e^{in(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4})} \rangle ,$ $\langle \langle \operatorname{corr}_{n} \{6\} \rangle \rangle \equiv \langle \langle e^{in(\phi_{1}+\phi_{2}+\phi_{3}-\phi_{4}-\phi_{5}-\phi_{6})} \rangle ,$ $\langle \langle \operatorname{corr}_{n} \{8\} \rangle \rangle \equiv \langle \langle e^{in(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}-\phi_{5}-\phi_{6}-\phi_{7}-\phi_{8})} \rangle ,$ $c_{n} \{2\} = \langle \langle \operatorname{corr}_{n} \{2\} \rangle \rangle ,$ $c_{n} \{4\} = \langle \langle \operatorname{corr}_{n} \{2\} \rangle \rangle - 2 \langle \langle \operatorname{corr}_{n} \{2\} \rangle \rangle^{2} ,$ $c_{n} \{4\} = \langle \langle \operatorname{corr}_{n} \{4\} \rangle \rangle - 2 \langle \langle \operatorname{corr}_{n} \{2\} \rangle \rangle^{2} ,$ $c_{n} \{6\} = \langle \langle \operatorname{corr}_{n} \{6\} \rangle \rangle - 9 \langle \langle \operatorname{corr}_{n} \{2\} \rangle \rangle \langle \langle \operatorname{corr}_{n} \{4\} \rangle \rangle + 12 \langle \langle \operatorname{corr}_{n} \{2\} \rangle \rangle^{3} ,$ $c_{n} \{8\} = \langle \langle \operatorname{corr}_{n} \{8\} \rangle \rangle - 16 \langle \langle \operatorname{corr}_{n} \{2\} \rangle \rangle \langle \langle \operatorname{corr}_{n} \{6\} \rangle \rangle - 18 \langle \langle \operatorname{corr}_{n} \{4\} \rangle \rangle^{2}$ $+ 144 \langle \langle \operatorname{corr}_{n} \{2\} \rangle \rangle^{2} \langle \langle \operatorname{corr}_{n} \{4\} \rangle \rangle - 144 \langle \langle \operatorname{corr}_{n} \{2\} \rangle \rangle^{4} .$

The ridge:

0.1

01

• Particle correlations in pp /₂{2,l∆η>2} and pPb at the LHC show features that in AA are 0.05 attributed to final state interactions describable by hydrodynamics and interpreted as a signal of equilibration. • Hydro works, although it 0.05 demands non-trivial inputs, and some limitations in pp.

 $v_n{2} = \sqrt{c_n{2}},$ $v_n{4} = \sqrt[4]{-c_n{4}},$ $v_n{6} = \sqrt[6]{c_n{6}/4},$ $v_n{8} = \sqrt[8]{-c_n{8}/33}.$

The ridge:

• Particle correlations in pp and pPb at the LHC show features that in AA are attributed to final state interactions describable by hydrodynamics and interpreted as a signal of equilibration.

v4/2

1

de

SC

°2° (4)

0.0

0.0

-0.

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

0

0.5

Ś

1701.07145, proton as 3 hot spots

FIG. 2. Elliptic (v_2) , triangular (v_3) and quadrupolar (v_4) flow coefficients from superSONIC simulations (bands) compared to experimental data from ATLAS, CMS and ALICE (symbols) for p+p (left panel), p+Pb (center panel) and Pb+Pb (right panel) collisions at $\sqrt{s} = 5.02$ TeV [58–62]. Simulation parameters used were $\frac{\eta}{s} = 0.08$ and $\frac{\zeta}{s} = 0.01$ for all systems. Note that ATLAS results for v_3, v_4 are only available for $\sqrt{s} = 13$ TeV, while all simulation results are for $\sqrt{s} = 5.02$ TeV.

Small x and non-linear dynamics:

- **High-energy QCD**: standard fixed-order perturbation theory (DGLAP, linear evolution) must eventually fail:
- → Large logs e.g. $\alpha_{s}\ln(1/x) \sim 1$: resummation (BFKL,CCFM,ABF,CCSS; HERA?). → High density ⇒ linear evolution cannot hold: saturation, either perturbative

- Non-linear effects are density effects: decrease x and increase A.
- Determining the dynamics at small x has been a major subject at HERA, and RHIC and the LHC both in pp, pA and AA. N.Armesto, 04.05.2018 Small-x Physics: 1. Introduction.

The CGC:

• Low energies: short-lived fluctuations of the components of the wave function when compared with the size of the target.

• High energies: many long lived fluctuations (small-x gluons) that do not self-interact during the scattering time, frozen configuration: fast/slow mode separation in an EFT (CGC), evolution equations.

The CGC:

 Interaction of a frozen configuration of partons through a shock wave, the S-matrix is given by a Wilson line:

$$W(x_{\perp}) = S(x_{\perp}) = \mathcal{P}\exp\left[ig\int dx^{+}A^{-}(x^{+},x_{\perp})\right]$$

• High energies: many long lived fluctuations (small-x gluons) that do not self-interact during the scattering time, frozen configuration: fast/slow mode separation in an EFT (CGC), evolution equations.

The CGC:

ltem	Order	Theory	Pheno- menology	Comments	
Evolution eqns.	NLO	~	~	rcBK and resummations; dilute-dense approx.	
DIS impact factor	NLO	 ✓ 	✓	dilute-dense approx.	
Hadrons at y~0	LO	 ✓ 	✓	q and Q , <mark>dilute-dense</mark> approx.	
Forward hadrons	NLO	 ✓ 	 ✓ 	q and Q, <mark>hybrid formalis</mark> m	
Quarkonium at y~0	LO	 ✓ 	 ✓ 	dilute-dense approx.+NRQCD	
Forward quarkonium	LO	 ✓ 	 ✓ 	hybrid formalism	
γ(*) at y~0	NLO	~	🗶 at NLO	<mark>dilute-dense</mark> approx., not yet DY at NLO	
Forward γ(*)	LO	 ✓ 	✓	hybrid formalism	
Dijets at y~0	LO	 ✓ 	 ✓ 	dilute-dense approx., partial NLO	
Forward dijets	LO	~	~	hybrid formalism and high-energy factorisation, partial NLO	
Diffractive dijets	NLO	 ✓ 	🗶 at NLO	dilute-dense approx.	
Exclusive vector mesons	NLO	~	≭ at NLO	dilute-dense approx.	
g/q/Y-g/q/Y correlations	LO	~	✓/X	glasma graph approx. + some density corrections; hybrid formalism	

Implications for heavy-ions:

 Assuming collinear factorisation holds, small -x PDFs poorly known for particle production (even for heavy objects at the FCC).

Contents:

I. Motivation.

2.A few recent topics:

- → Nuclear parton densities.
- → Particle correlations.
- \rightarrow NLO calculations.

3. Implication in future experimental programmes.

Note: I am limiting the presentation to activities at IGFAE (in collaboration with LIP when applicable).

Available nPDF sets:

SET		HKN07 PRC76 (2007) 065207	EPS09 JHEP 0904 (2009) 065	DSSZ PRD85 (2012) 074028	nCTEQ15 PRD93 (2016) 085037	KAI5 PRD93 (2016) 014036	EPPS 6 EPJC C77 (2017) 63
data	eDIS	~	✓	✓	~	~	~
	DY	v	 ✓ 	✓	✓	✓	 ✓
	π0	×	~	>	~	*	>
	vDIS	×	×	✓	×	×	~
	pPb	×	×	×	×	×	~
# data		1241	929	1579	740	1479	1811
C	order	NLO	NLO	NLO	NLO	NNLO	NLO
P	roton PDF	MRST98	CTEQ6.1	MSTW2008	~CTEQ6.I	JR09	CT14NLO
SC	mass heme	ZM-VFNS	ZM-VFNS	GM-VFNS	GM-VFNS	ZM-VFNS	GM-VFNS
comments		Δχ ² =13.7, ratios, <u>no</u> <u>EMC for</u> <u>gluons</u>	$\Delta \chi^2$ =50, ratios, <u>huge</u> <u>shadowing-</u> <u>antishadowing</u>	Δχ ² =30, ratios, <u>medium-modified</u> <u>FFs for π⁰</u>	Δχ ² =35, PDFs, valence <u>flavour</u> <u>sep., not enough</u> <u>sensitivity</u>	PDFs, <u>deuteron</u> <u>data included</u>	Δχ ² =52, flavour sep., ratios, <u>LHC pPb data</u>

EPPS16:

$Q^2 = 10 \text{ GeV}^2$

nCTEQ15 vs.
 EPPS16: note
 the
 parametrisation
 bias.

 Presently available LHC
 data seem not to
 have a large
 effect: large-x
 glue
 (baseline=no V, no LHC data).

• Several explanations for the ridge proposed in the CGC:

→ Assume that the final state carries the imprint of initial-state correlations;

→ Use that the CGC wave function is rapidity invariant over $Y \propto I/\alpha_s$ (we resum terms $\alpha_s \ln(I/x) = \alpha_s Y \sim I$ coming from the I/x soft divergence).

• Several explanations for the ridge proposed in the CGC:

→ Assume that the final state carries the imprint of initial-state correlations;

→ Use that the CGC wave function is rapidity invariant over $Y_{\propto} I/\alpha_s$ (we resum terms $\alpha_s \ln(I/x) = \alpha_s Y \sim I$ coming from the I/x soft divergence).

• "Glasma

graphs" (dilute): succesful phenomenology (Dusling-Gelis-Jalilian-Marian-Lappi-McLerran-Venugopalan,

Kovchegov-Werpteny).

• Several explanations for the ridge proposed in the CGC:

→ Assume that the final state carries the imprint of initial-state correlations;

 \rightarrow Use that the CGC wave function is rapidity invariant over $Y \propto I/\alpha_s$ (we resum terms $\alpha_s \ln(1/x) = \alpha_s Y \sim 1$ coming from the 1/x soft divergence).

• "Glasma

graphs" (dilute): succesful of target fields phenomenology (Dusling-Gelis-Jalilian-Marian-Lappi-McLerran-Venugopalan,

Kovchegov-Werpteny).

• Local anisotropy (Kovner-Lublinsky, Dumitru-McLerran-Skokov).

• Several explanations for the ridge proposed in the CGC:

→ Assume that the final state carries the imprint of initial-state correlations;

 \rightarrow Use that the CGC wave function is rapidity invariant over $Y \propto I/\alpha_s$ (we resum terms $\alpha_s \ln(1/x) = \alpha_s Y \sim 1$ coming from the 1/x soft divergence).

• "Glasma

graphs" (dilute): succesful of target fields phenomenology (Dusling-Gelis-Jalilian-Marian-Lappi-McLerran-Venugopalan, Kovchegov-Werpteny).

(Kovner-Lublinsky, Dumitru-McLerran-Skokov).

 Local anisotropy
 Spatial variation of partonic density (Levin-Rezaeian-Gotsman).

• The appearance of the ridge in the final state, within the glasma graph approach, can be traced to the Bose enhancement of gluons in the (rapidity invariant) wave function:

|503.07|26, |509.03223

• The appearance of the ridge in the final state, within the glasma graph approach, can be traced to the Bose enhancement of gluons in the (rapidity invariant) wave function:

• The appearance of the ridge in the final state, within the glasma graph approach, can be traced to the Bose enhancement of gluons in the (rapidity invariant) wave function:

• The appearance of the ridge in the final state, within the glasma graph approach, can be traced to the Bose enhancement of gluons in the (rapidity invariant) wave function:

• The appearance of the ridge in the final state, within the glasma graph approach, can be traced to the Bose enhancement of gluons in the (rapidity invariant) wave function:

- It can be extended for quarks giving Pauli blocking (1610.03020): short range anticorrelation in the near side ridge.
- It contains information both on the 'source' size I/Q_s (BE, suppressed by the number of sources), and on the size of the distribution of 'sources' R (HBT).

N.Armesto, 04.05.2018 - Small-x Physics: 2.A few recent topics.

- It can be extended for quarks giving Pauli blocking (1610.03020): short range anticorrelation in the near side ridge.
- It contains information both on the 'source' size I/Q_s (BE, suppressed by the number of sources), and on the size of the distribution of 'sources' R (HBT).

• Limitations:

→ S-matrices for rescattering of partons with the target are expanded in colour fields \Rightarrow low density approximation

(extended to dilute-dense 1804.02910, more to come soon). \rightarrow Gaussian (MV) isotropic colour correlations taken \Rightarrow correlations subleading in N_c, no odd harmonics, c₂{4}>0. $\langle \rho_T^a(k)\rho_T^b(p)\rangle_T = (2\pi)^2\lambda^2(k)\delta^{ab}\delta^{(2)}(k+p)$ N.Armesto, 04.05.2018 - Small-x Physics: 2.A few recent topics.

NLO particle production:

• Light and heavy production computed at NLO in the hybrid formalism: collinear parton through a dense target, forward η, yields LO DGLAP PDFs/FFs and LO BK dipoles. [Chirilli-Xiao-Yuan+Stasto-Zaslavsky-Wanatabe, Altinoluk-Kovner+Armesto-Beuf-Lublinsky, Kang-Vitev-Xing, Ducloue-Lappi-Mantysaari-Zhu]

• Negative results at large rapidities from the original CXY calculation, with dependence on the choice of dipole.

→ Note: hybrid valid for $p_T^2/s_0 <<1$.

NLO particle production:

• Light and heavy production computed at NLO in the hybrid formalism: collinear parton through a dense target, forward η, yields LO DGLAP PDFs/FFs and LO BK dipoles. [Chirilli-Xiao-Yuan+Stasto-Zaslavsky-Wanatabe, Altinoluk-Kovner+Armesto-Beuf-Lublinsky, Kang-Vitev-Xing, Ducloue-Lappi-Mantysaari-Zhu]

NLO particle production:

- Work ongoing to cure deficiencies of NLO BK and of single particle production through resummations [lancu-Mueller-Tryantafillopoulos, Lappi-Ducloue-Zhu].
- Extension to photons+jets and the relation with the TMD factorisation formalism (1802.01398).

 $\mathcal{M} = q^{\mu}$ [gluon]

 10^{-10}

 10^{-1}

 10^{-3}

 10^{-5}

 10^{-10}

 10^{-10}

 10^{-5}

 $\eta = 2.2$

 $rac{\mathrm{d}^3 N}{\mathrm{l}\eta\mathrm{d}^2 p_\perp} \left[\mathrm{GeV}^{-2}
ight]$

GBW

 p_{\perp} [GeV]

🛛 LO

 $= \pm NLO$

 $\eta = 2.2$

 $\eta = 3.2$

 $(0, x_a p_a^-, \mathbf{k}_{q\perp})$

• Only fluctuations that are long lived are resolved coherently by the target: loffe time restriction, equivalent to P- ordering from the target nucleus.

[nucleus] p_a^{μ}

$$P_{pair}^{-} = \frac{k_{\perp}^{2}}{2\xi(1-\xi)x_{B}P^{+}} < P_{T}^{-} \Longrightarrow t_{Ioffe} = \frac{2\xi(1-\xi)x_{B}P^{+}}{k_{\perp}^{2}} > \tau = \frac{2P^{+}}{s_{0}} \int_{\frac{k_{\perp}^{-1}}{2}}^{\frac{10^{-1}}{2}} \int_{10^{-5}}^{\frac{10^{-1}}{2}} \int_{10^{-5}}^{\frac{10^{-5}}{2}} \int_{$$

N.Armesto, 04.05.2018 - Small-x Physics: 2.A few recent topics.

rcBK $\Lambda^2_{\rm OCD} = 0.01$

 $p_{\perp}[\text{GeV}]$

🛛 LO

+NLO

 $\square + L_q + L_q$

BRAHMS

Contents:

I. Motivation.

- 2.A few recent topics:
 - → Nuclear parton densities.
 - → Particle correlations.
 - \rightarrow NLO calculations.

3. Implication in future experimental programmes.

Note: I am limiting the presentation to activities at IGFAE (in collaboration with LIP when applicable).

N.Armesto, 04.05.2018 - Small-x Physics.

Summary:

• Small-x physics is a hot topic both from the theoretical point of view: high-energy behaviour in Quantum Field Theory, and from an experimental point of view: pp, pA, AA and electron-ion colliders.

- Our activities spam a wide range of subjects, prominently:
 - → Nuclear parton densities.
 - → Particles correlations in the CGC.
 - → NLO calculations and relation with TMD factorisation.
 → …

• We are strongly involved in many of the future possibilities for the field: HL-LHC, EIC, LHeC, FCC.

Summary:

• Small-x physics is a hot topic both from the theoretical point of view: high-energy behaviour in Quantum Field Theory, and from an experimental point of view: pp, pA, AA and electron-ion colliders.

- Our activities spam a wide range of subjects, prominently:
 - → Nuclear parton densities.
 - → Particles correlations in the CGC.
 - → NLO calculations and relation with TMD factorisation.
 → …

• We are strongly involved in many of the future possibilities for the field: HL-LHC, EIC, LHeC, FCC.

→ Thank you to the organisers for their invitation and arranging all this.
 → Thanks to people at LIP, particularly Guilherme and Liliana, for a long collaboration.
 → Thank you very much for your attention!!!

N.Armesto, 04.05.2018 - Small-x Physics.