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Micro-dosimetfy of thgh-LET particles
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Dosimetry

Dosimetry: is the theoretical and experimental investigation of the mean imparted-
energy in a point of an arbitrarily small macroscopic volume.

+ Linear energy transfer (LET): is the mean energy loss by charged particles
owing to collisions with electrons that is the electronic stopping power
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+ Absorbed dose: is the mean value of the energy imparted by ionising
radiation to a volume of interest divided by the mass of that volume
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Assessing radhiation risks

At low doses and low dose rates, the stochastic effects are proportional to the
absorbed dose (linear-non-threshold (LNT) model).

+ Dose equivalent: ok — / Q —dL

S.I. unit “sievert” (Sv)
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ICRP Report 26, 1977 particles with the same LET.

ICRP Report 60, 1991



Relative biological effectiveness (RBE)

<+ RBE: ratio of a dose of a low-LET reference radiation to a dose of radiation
considered that gives an identical biological effect
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ICRP Report 92, 2003



Factors affecting the RBE and ()

+ Source location: the characteristics of the incident radiation are changed as it
passes through deep tissues in the body or materials (ex: neutrons).

+ Track structures: HZE particles produce more
energetic 0 rays than LZE particles for the
same LET.

+ Dose fractioning: several irradiations with
small doses renders a larger RBE than a single
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+ Cell type and biological endpoint: how is the cell death defined?



(Q-factor for space missions

NASA approach (Cucinnotta et al. NASA / TP-2011-216155, 2011):

+ Different parameters for solid cancers and leukemia.
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Cell survival RBEs for V79 cells

and human T1 cells

[ ——
A f
8% %
4 /\/ \
#/‘ \
3} My, 3 o]
7 Oq
A/ Lo}
2Fr e N
A ~
,Af"/e P o
1 o> 4
10° 10' 10° 10° 10*
LET (keVum*?)
1 S
»
4 B 6 o
‘. °oa
3 A !
o 0.
A o)
2..
AL
A
1k AQ A o
10’ 107 10° = 10 10°
z’/ﬁ
B-

)
-
(e
8

Effective Dose Equivalent (uSv/day

100

—
o

—

e
—

Ion effective charge

7' =7l o 1957 78

Male astronauts inside de ISS

B Hgnasa: 451 (USv/day)
B Hgcgp: 392 (USv/day) f——>

O Hgcry: 328 (USv/day)

Ils |
o o o7 o M QO & 0 R AN = & < Q9 ~ o O o ;o g g 9=
EEE AR OO SRR O AN SAE T S SaSE L LEEET
s 2 SSEE29E
o Ay a2 85
Z. 0 &

Sato et al. Adv. Space. Rad. 52, 2013



RBE for proton therapy QA

In vivo data and clinical experience support the 155-MeV Protorll beam witdh }‘ihe 6-cm
inal SOBP widt
use of an average RBE=1.1 at the SOBP. nesRee p
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+ LET: distal RBE and range increase
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+ Tissue type: RBE seems to be higher to late
responding (healthy) tissue
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+ Dose: RBE increases with decreasing dose Kato et alo] RaditiRe: 50001
but the effect seems to be small for in vivo.
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Paganetti, Phys. Med. Biol. 59, 2014
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Micro-dosimetry

Microdosimetry: is the theoretical and experimental investigation of imparted-
energy probability distributions in a volume of matter that is crossed by a single
ionising particle.
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The 1deal micro-dosimeter

Measuring doses at the (sub)cell scale requires detectors that ideally have:
+ Excellent spatial resolution: order of the micrometer
+ Well defined sensitive volume: to know the mean-chord length
+ Minimal wall effects: similar scattering properties in the wall and SV
+ Tissue-equivalence: walls and SV with compositions similar to tissues
+ Should have a low threshold: <1 keV/ um (low noise)

+ Radiation resistant, operate at low potentials, compact and low cost.



Tissue-equivalent proportional counters (TEPC)

The TEPC is based on the idea that the energy deposited ina  “HAWK” TEPC (NASA)
gas filled cavity equals the energy imparted in a cell.
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+ Tissue equivalent gas (methane / propane based)

+ Tissue-equivalent plastic walls

+ Pressure adjusted to equal the energy loss at the cell
scale

+ Well-known technology

+ Too large to model arrays of cells

+ Needs high operating voltages



Si-based micro-dosimeters

Passivation SizN4 50 nm+ SiO, 50 nm

Aluminum 500 nm

. TR ¢ — 202 = / Polysilicon 500 nm
HIHHHN "'//’7 y

Field oxide
SiO, 350 nm
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Si0, 1 um

Listen to the next presentation!



Summary

+ Detailed description of the energy deposition at the (sub)cell scale is needed to
characterise the biological response of high-LET particles = Micro-dosimetry

+ This is the case of ion therapy and radiation risk assessment for air-flight crews
and human space missions

+ More measurements and simulations of micro-dosimetric distributions of high-LET
radiation in vivo and different cell types are needed



Outlook

+ LIP has a sound experience in simulations using Geant4 and wants to explore
the capabilities of the Geant4-DNA extension for health and space applications.

+ LIP has a sound experience in the design and development of particle detectors.
The development of instruments for micro-dosimetry is an area that intends to
pursue (Si-based and using plastic scintillators).

“ Collaborations with the biophysics group at GSI/FAIR are planned. A joint project is
foreseen to be submitted in 2019/2020 to the GSI-PAC to study shielding designs and
materials that minimise the effects of secondary radiation in human space missions.

“ The installation of a proton therapy unit in Lisbon in the next years enhances the
opportunities for research in the areas of radiobiology and micro-dosimetry. In this

context a project is being developed with the radiobiology group at C*TN.



Initial and residual y-H2AX foci were observed
in charged particle irradiated fibroblasts.
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Kavanagh et al, Scientific Reports 3, 2013



