Nuclear Physics with R³B: Research and Technical challenges

Lola Cortina

Strongly interacting matter

Physics with relativistic rare beams

Relativistic beams

- → in-flight production and detection of secondary beams
- → nuclear fragments are forward focussed
- → simplified description of the reaction mechanism

Reactions with Relativistic Radioactive Beams

→Secondary beams at 700 A.MeV
 →Fixed target reactions
 →Large Acceptance Dipole Magnet
 →Powerful detector system: beam, fragment, gamma, Light charge particles and neutrons

Versatile program

- \rightarrow NN correlations and the nuclear force
- → nuclear structure far from stability
- → nuclear dynamics: fission
- → EoS for high-density neutron-rich matter
- \rightarrow in-medium excitation of baryon resonances
- → origin of the heavy elements in Universe

Physics with relativistic rare beams

Primary beam intensity: 100-1000

Secondary beam intensities Radioactive nuclei: up to factor 10,000

Beam energy: Factor 15

Reactions with Relativistic Radioactive Beams

→Secondary beams at 700 A.MeV
→Fixed target reactions
→Large Acceptance Dipole Magnet
→Powerful detector system: beam, fragment, gamma, Light charge particles and neutrons

Versatile program

- \rightarrow NN correlations and the nuclear force
- \rightarrow nuclear structure far from stability
- → nuclear dynamics: fission
- → EoS for high-density neutron-rich matter
- \rightarrow in-medium excitation of baryon resonances
- \rightarrow origin of the heavy elements in Universe

Physics case

Kilonova : Thermal glow from the radiactive decay of heavy sotopes

LETTER

doi:10.1038/nature24453

Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event

Daniel Kasen^{1,2}, Brian Metzger³, Jennifer Barnes³, Eliot Quataert¹ & Enrico Ramirez-Ruiz^{4,5}

Discovery of the electromagnetic counterpart to the GW170817 → Provides the first evidence for r-process nucleosynthesis.

R³B Layout

NeuLAND neutrons

g-rays protons

CALIFA

<u>GLAD</u>

protons light fragments

1

Tracking Detectors

heavy fragments

DK

R³B in numbers

- Largest nuclear physics collaboration
- Working groups are the collaboration motor

Calo. Spect.

Photo Peak Eff.	40% (up to Eγ=15 MeV projectile frame)
Calorimeter for HE LCP	200-700 MeV in lab system
ΔΕ/Ε	~5-6% (FWHM at Eg=1 MeV) , ~ 3% forward
LCP resolution	~2% (stopped particles), ~ 5% (punch through)

Under construction

Working Group

-USC IEM, Uvigo Spain -U Lisboa LIP, Portugal -ULund, Chalmers Sweden -TUM, TUD Germany -Dubna Russia

BARREL 38.9%

1130 mm

Febex4 \rightarrow ADC @ 100 MHz DRS4 \rightarrow 1 GHz ADC

- External structure 3.5 x 4 m
- Detector volume ~ 1.3 m³
- Detector weight ~ 2.5 Tm
- 2528 detection units

	Barrel	Endcap	
		iPhos	CEPA
Scintillator	CsI(TI)	CsI(TI)	LaBr/LaCI
Geom.	11	16	6
Crys. Len (cm)	15-22	22	4/7
Polar cov.	7-20º	20-43º	43-140°
Read-out	LAAPD	LAAPD	PM/SiPM
Dete.chan.	1952	480	96
Elec. chan.	1952	960	96
Weight (Kg)	~ 1500	~ 550	~ 50
Volume (cm ³)	285.000	90.000	11.000

1st Joint Workshop IGFAE/LIP, May the 4th 2018

FAIR Phase-0

To R3B CAVE <u>Phase 0</u> (2018)

-Time stamps (first implementation)/local trigger logics/readout libraries -Online analyss R³B-Root - FAIR-Root

R3B Cave Infrastructure

R3B Experiments approved

PAC call June 2017 R3B had a very good succesful rate

Scheduled	Experiment
October 2018	S444: Commissioning of main R ³ B detectors
November 2018	S473 : Constraining the energy-density functionals and the density- dependence of the symmetry energy by measurements of accurate cross-sections
November 2018	S454 : Studying the astrophysical rate of 12C(a,g)160 via Coulomb dissociation
2019	S455: Fission investigated with relativistic radioactive beams and the SOFIA/R3B setup
2019	S442 : Study of multi-nucleon configurations in nuclei towards the dripline
2019	S467 : Single particle structure of n-rich Ca isotopes: shell evolution along Z=20

S454: GENP research programme

Most complete fission experiments coupling R3B + SOFIA

- ✓ Characterization of the fissioning nucleus (A, Z, E*)
 → (p,2p) with CALIFA+tracker
- ✓ Characterization of the fission fragments (A, Z, TKE, n)
 → SOFIA + NeuLAND
- Soon @ R3B/FAIR
- J. Benlliure and J.L. Rodríguez, proposal approved by the GSI/FAIR PAC

Conclusions

- R3B@FAIR offers unique opportunities to investigate neutron star matter as expected to participate in binary neutron star mergers nucleosynthesis.
- GENP/IGFAE has a large impact in the experiment: spokesperson (D. Cortina), simulation and data analysis WG convener (H. Alvarez), leading physics runs (J. Benlliure)
 - Physics interests: structure of nuclei far from stability, fission, Eos of asymmetric nuclear matter....
 - Instrumentation: CALIFA (25%), future TPC under consideration
 - Software development: R3BRoot (discussed in detail by H. Alvarez)

2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
						CALIFA			
								R3	в трс
					(p,2p)	fission e	xperimer	it	
						∆ in-m	edium ex	periment	
			Short-rai	nge corre	lations e	xperimen	t	_	

GLAD

March 2016 Large aperture: horizontal

(entrance: 80 cm, exit: 1,2 m), vertical (entr. 1 m, exit 4 m)

Superconducting magnet: 5 Tm (fringe field at 30 cm 20 mT)

Dimensions: length 3,5 m; width 7 m; heigth 4 m; weight 50 Tons

Target Area

Si - Tracker

- 18 detector ladders in two conical layers 6+12.
- Strip pitch 50 mm, strip width 38 mm.
- Sensitive area 5600 cm².
- 912 ASICs equi. 116736 channels.
- Operated in UHV

NeuLAND Double Plane

Efficiency 0.2-1.0 GeV n	> 90%
Multi-hit	Up to 5 n
Invariant mass resolution	ΔE < 20 keV at 100 keV above threshold

- -full active detector using RP/BC408
- -face size 250x250 cm²
- -active depth 300 cm
- -3000 scintillator bars + 6000 PMTs
- -32 tons
- $-\sigma_{x,y,z} \approx 3$ cm and $\sigma_t < 150$ ps

CALIFA Phase 0 construction status

